首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The activities of superoxide dismutase (SOD), glutathione peroxidase, glutathione reductase, and catalase were measured in isolated brain capillaries, choroid plexus, cerebrum, and cerebellum from rats of 2, 6, 12, and 24 months. The contents of copper, zinc, and manganese were determined in capillaries, cerebrum, and cerebellum, and the profile of fatty acids was studied in brain capillaries. In brain capillaries, the activities of glutathione peroxidase and glutathione reductase did not change with age. The activities of the two enzymes increased in cerebrum and cerebellum. In choroid plexus, glutathione peroxidase activity increased, but glutathione reductase activity remained unchanged. Catalase activity in brain capillaries declined, whereas in choroid plexus, cerebrum, and cerebellum, it did not change. The activities of the three enzymes were significantly higher in brain capillaries and choroid plexus than in cerebrum and cerebellum. SOD activity increased in the four tissues. Copper content in the capillaries increased initially and then levelled off, whereas it continued to increase in cerebrum and cerebellum. Zinc increased in brain capillaries, but did not vary in cerebrum and cerebellum. Manganese content remained constant in all tissues studied. The percent of saturated fatty acids in brain capillaries did not change with age, whereas those of mono- and polyunsaturated fatty acids increased and decreased, respectively. The possibility that a deficiency of enzymes protective against free radicals causes blood-brain barrier and blood-cerebrospinal fluid barrier degeneration is ruled out.  相似文献   

2.
Systemic injection of substances that generate free radicals into the rat induces deleterious alteration of various tissues (as demonstrated by the production of conjugated dienes and malondialdehyde) but only has a slight effect on the brain. This shows that the blood-brain barrier has important protective properties. In fact the cerebral capillaries and microvessels have superoxide dismutase, glutathione peroxidase, and catalase activities higher than those found in the rest of the cerebral tissue during aging. These activities vary little, except for catalase which decreases. But, curiously, the concentrations of Mn, Cu, and Zn are not related to enzymatic activity, although the micro-elements are necessary for the activity of superoxide dismutase. On the other hand, during aging, the capillaries and cerebral microvessels undergo extensive modifications at the level of the polyunsaturated fatty acids: for example, the concentration of arachidonic acid decreases by half.  相似文献   

3.
The activities of peroxide-detoxifying enzymes such as superoxide dismutase (SOD), glutathione peroxidase, glutathione reductase, and catalase were measured in the nervous system of neurological dysmyelinating mutants: quaking (Qk), shiverer (Shi), and trembler (Tr) mice. Cu/Zn-SOD activity was higher in the cerebellum of Qk and Shi mice (by 53% and 106%, respectively) in comparison with controls, but it was the same in the cerebellum of Tr mice and their corresponding controls. In contrast, there was no difference in the level of Cu/Zn-SOD activity in the cerebrum of Qk, Shi, and Tr mice and their respective controls. Mn-SOD activity was the same among all the mutants compared to control animals in both cerebrum and cerebellum. In Shi cerebellum, glutathione peroxidase and glutathione reductase activities were slightly decreased (a 21.6% and a 13.2% diminution, respectively), whereas catalase activity in cerebrum and cerebellum was the same among mutants and control mice. In the sciatic nerve from Tr mice, all the enzymatic activities were enhanced: sixfold increase for total SOD, and 2.4-fold, 3.5-fold, and 1.8-fold increase for glutathione peroxidase, glutathione reductase, and catalase, respectively.  相似文献   

4.
Recent findings suggest that intracellular oxidants are involved in the induction of apoptosis and this type of cell death can be inhibited by various antioxidants. In our accompanying paper, we have shown apoptosis in the villus tip cells of the monkey small intestinal epithelium. The aim of the present study was to evaluate the possible relationship between oxidative stress, antioxidant levels and the apoptotic process in the monkey small intestinal epithelium. Monkey small intestinal epithelial cells were isolated into different fractions consisting of villus, middle and crypt cells. Mitochondrial function was assessed by the reduction of the tetrazolium dye, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), with and without succinate. The extent of lipid peroxidation was assessed by measuring the formation of conjugated diene, depletion of polyunsaturated fatty acids and α-tocopherol. Level of antioxidant enzymes like, superoxide dismutase (SOD), catalase, glutathione S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase were also quantitated in various cell fractions. MTT reduction was significantly decreased in villus cells as compared to the cells from other fractions and this was evident even in presence of the respiratory substrate, succinate. Increased formation of conjugated diene and depletion of polyunsaturated fatty acids were seen in villus and crypt cells as compared to middle fraction cells. The α-tocopherol level was decreased in both villus and crypt cells as compared to cells from middle region. Significant decrease of SOD activity was seen in the villus tip cells and a slight decrease was seen in the crypt fractions. Glutathione dependent enzymes like GST, GPx and GSH reductase showed higher activity in the villus fractions. A similar observation was also seen in the catalase activity. This study has shown that although oxidative stress is seen in both villus and crypt cells, decreased mitochondrial function was seen in villus tip cells which may be responsible for apoptotic process in the intestinal epithelium.  相似文献   

5.
Antioxidant defences of the apoplast   总被引:1,自引:0,他引:1  
Summary The apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.Abbreviations AA reduced ascorbate - APX ascorbate peroxidase - DHA dehydroascorbate (oxidised ascorbate) - DHAR dehydroascorbate reductase - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG glutathione disulphide - GR glutathione reductase - MDHA monodehydroascorbate - MDHAR monodehydroascorbate reductase - SOD superoxide dismutase  相似文献   

6.
Activities of enzymes involved in the detoxification of reactive oxygen species (catalase, glutathione reductase, peroxidase and superoxide dismutase (SOD)) were examined in the leaves of Phaseolus vulgaris L. var. Top Crop treated with plant hormones and infected with a non-lesion-forming isolate of white clover mosaic potexvirus (WClMV). The activities of catalase, glutathione reductase and SOD rapidly declined after infection while peroxidase activity was enhanced. These changes occurred before the rapid increase (5 days) in WClMV replication. A mild chlorosis appeared 7–10 days after inoculation but necrosis was never observed on inoculated leaves. Plants treated with dihydrozeatin, salicylic acid and jasmonic acid prior to WClMV inoculation showed elevated catalase, glutathione reductase, and peroxidase activity, while SOD activities remained the same as in water-treated controls. These treatments all inhibited virus replication with enzyme activities remaining near control levels. We propose that a decline in free radical scavenging capacity may be required before a rapid increase in virus replication can take place. Treatments increasing the ability of the plant to scavenge reactive oxygen species may hinder virus replication. A possible role for reactive oxygen species as a requirement for virus replication is discussed.  相似文献   

7.
Using diabetes mellitus as a model of oxidative damage, this study investigated whether subacute treatment (10 mg/kg/day, intraperitoneally for 14 days) with the compound piperine would protect against diabetes-induced oxidative stress in 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Liver, kidney, brain, and heart were assayed for degree of lipid peroxidation, reduced and oxidized glutathione (GSH and GSSG, respectively) content, and activities of the free-radical detoxifying enzymes catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. Piperine treatment of normal rats enhanced hepatic GSSG concentration by 100% and decreased renal GSH concentration by 35% and renal glutathione reductase activity by 25% when compared to normal controls. All tissues from diabetic animals exhibited disturbances in antioxidant defense when compared with normal controls. Treatment with piperine reversed the diabetic effects on GSSG concentration in brain, on renal glutathione peroxidase and superoxide dismutase activities, and on cardiac glutathione reductase activity and lipid peroxidation. Piperine treatment did not reverse the effects of diabetes on hepatic GSH concentrations, lipid peroxidation, or glutathione peroxidase or catalase activities; on renal superoxide dismutase activity; or on cardiac glutathione peroxidase or catalase activities. These data indicate that subacute treatment with piperine for 14 days is only partially effective as an antioxidant therapy in diabetes.  相似文献   

8.
Analyses were made of the phsopholipid fatty acids and the antioxidant enzymes in the carp (Cyprinus carpio morpha) at three different oxygen concentrations, corresponding to hyperoxia, hypoxia and anoxia. Variations of the oxygen concentration were found to influence the quantities of phsopholipid fatty acids, as well as the antioxidant enzyme activities. In hyperoxia and hypoxia the amount of polyunsaturated fatty acids in carp liver was higher than in anoxia, but in other tissues there was no significant differences. As to the antioxidant enzyme system, the glutathione peroxidase activity and the lipid peroxidation value increased significantly with decrease of the oxygen concentration, while the total superoxide dismutase activity decreased on lowering of the oxygen level.  相似文献   

9.
A large number of micropropagated Euphorbia millii shoots from temporary immersion bioreactor showed thick broad leaves that were translucent, wrinkled and/or curled and brittle, symptoms of hyperhydricity. The environment inside bioreactor normally used in plant micropropagation is characterised by high relative humidity, poor gaseous exchange between the internal atmosphere of the bioreactor and its surrounding environment, and the accumulation of ethylene, conditions that may induce physiological disorders. A comparison of hyperhydric shoots (HS) with normal plants shows marked increase in malondialdehyde (MDA) content in HS plants. MDA, a decomposition product of polyunsaturated fatty acids hydroperoxides, has been utilized very often as a suitable biomarker for lipid peroxidation, which is an effect of oxidative damage. This hypothesis is also confirmed by the higher lipoxygenase (LOX) activity in HS plants. The potential role of antioxidant enzymes in protecting hyperhydric shoots from oxidative injury was examined by analyzing enzyme activities and isozyme profiles of hyperhydric and non-hyperhydric leaves of E. millii. Superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activity were significantly higher in hyperhydric tissue as compared to non-hyperhydric normal leaf tissue. After native polyacrylamide gel electrophoresis (PAGE) analysis, seven SOD isoenzymes were detected and the increase in SOD activity observed in hyperhydric tissue seemed to be mainly due to Mn-SOD and Cu/Zn-SOD. The activity of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) was proportionally increased in HS tissue compared to normal leaves indicating a crucial role in eliminating toxic H2O2 from plant cells. The depletion of GSH and total glutathione in spite of higher GR activities observed in HS tissue indicates that mechanism of antioxidant defense was by enhanced oxidation of GSH to GSSG by DHAR yielding ascorbate (AA). The antioxidant metabolism has been shown to be important in determining the ability of plants to survive in hyperhydric stress and the up regulation of these enzymes would help to reduce the build up of ROS.  相似文献   

10.
The effect of elevated light treatment (25 degrees C, PPFD 360 mumol m-2 sec-1) or chilling temperatures combined with elevated light (5 degrees C, PPFD 360 mumol m-2 sec-1) on the activity of six antioxidant enzymes, guaiacol peroxidases, and glutathione peroxidase (GPx, EC 1.11.1.9) protein accumulation were studied in tobacco Nicotiana tabacum cv. Petit Havana SR1. Both treatments caused no photooxidative damage, but chilling caused a transient wilting. The light treatment increased the activities of ascorbate peroxidase (APx, EC 1.11.1.11) and guaiacol peroxidases while catalase (EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2) were unchanged. In contrast, chilling treatment did not increase any of the antioxidant enzyme activities, but decreased catalase and to a lesser extent DHAR activities. Glutathione peroxidase protein levels increased sporadically under light treatment and constantly under chilling. Both chilling and light stress caused induction of glutathione synthesis and accumulation of oxidised glutathione, although the predominant part of the glutathione pool remained in the reduced form. Antioxidant enzymes from the chilling treated plants were measured at both 25 degrees C and 5 degrees C. Measurements at 5 degrees C revealed a 3-fold reduction in catalase activity, compared with that measured at 25 degrees C, indicating that the overall reduction in catalase after four days of chilling was approximately 10-fold. The overall reduction in activity for the other antioxidant enzymes after four days of chilling was 2-fold for GR and APx, 1.5-fold for MDHAR, 3.5-fold for DHAR. The activity of SOD was the same at 25 and 5 degrees C. These results indicate that catalase and DHAR are most strongly affected by the chilling treatment and may be the rate-limiting factor of the antioxidant system at low temperatures.  相似文献   

11.
Effects of flooding on the activities of some enzymes of activated oxygen metabolism, the levels of antioxidants, and lipid peroxidation in senescing leaves of tobacco were investigated. As judged by the decrease in chlorophyll and protein levels, flooding accelerated the senescence of tobacco leaves. Total peroxide and the lipid peroxidation product, malondialdehyde, increased in both control and flooding-treated leaves with increasing duration of the experiment. Throughout the duration of the experiment, flooded leaves had higher levels of total peroxide and malondialdehyde than did control leaves. Flooding resulted in an increase in peroxidase and ascorbate peroxidase activities and a reduction of superoxide dismutase activity in the senescing leaves. Glycolate oxidase, catalase, and glutathione reductase activities were not affected by flooding. Flooding increased the levels of total ascorbate and dehydroascorbate. Total glutathione, reduced form glutathione, or oxidized glutathione levels in flooded leaves were lower than in control leaves during the first two days of the experiment, but were higher than in control leaves at the later stage of the experiment. Our work suggests that senescence of tobacco induced by flooding may be a consequence of lipid peroxidation possibly controlled by superoxide dismutase activity. Our results also suggest that increased rates of hydrogen peroxide in leaves of flooded plants could lead to increased capacities of the scavenging system of hydrogen peroxide.Abbreviations GSH reduced form glutathione - GSSG oxidized form glutathione - GSSG reductase glutathione reductase - MDA malondialdehyde - SOD superoxide dismutase  相似文献   

12.
Changes in 7 antioxidative enzymes in naturally senescent cotyledons of cucumber ( Cucumis sativus ) were investigated. The activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (EC 1.11.1.6), dehydroascorbate reductase (EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2) gradually decreased during the progression of senescence, while those of ascorbate peroxidase (APX; EC 1.11.1.11) and guaiacol peroxidase (GPX; EC 1.11.1.7) gradually increased. The activity of monodehydroascorbate reductase (MDAR; EC 1.6.5.4) was not significantly changed. Western blot analysis showed that the protein level of mitochondrial SOD gradually declined. The protein level of catalase transiently decreased and then increased in the later stages of senescence, despite the decrease in its activity. The overall behavior was markedly different from that found in cotyledons of artificially senescing seedlings transferred into darkness; the activities of SOD, catalase, APX, GPX and GR gradually increased.  相似文献   

13.
The activities of Cu,Zn superoxide dismutase, glutathione peroxidase, catalase and glutathione reductase in neuronal and glial cell-enriched fractions obtained from the cerebral cortex of rat brain during aging (15, 30, 90, 350, 750 days of age) were assayed. Our results showed that glutathione peroxidase, catalase and glutathione reductase activities varied little during the examined periods. Only the Cu,Zn superoxide dismutase activity decreased notably from 15th to 750th day of age in both neuronal and glial cells, moreover the activities of all enzymes studied were always detected at lower levels in neuronal cells with respect to glial cells. In agreement with diminished SOD activity, the lipid peroxidation showed an elevated increase with aging; this fact is more evident in neuronal than in glial cells. In conclusion our data show that Cu,Zn superoxide dismutase is the most affected antioxidant enzymatic system of brain aging and it could be responsible for the increased lipid peroxidation in both cell types examined.A preliminary report of these results was presented at the 19th Meeting F.E.B.S. Rome July 2–7, 1989.  相似文献   

14.
The content of reduced glutathione and of glutathione disulfide as well as the activities of glutathione reductase, glutathione peroxidase, glutathione S-transferases, catalase and superoxide dismutases were determined in human hepatoma Hep 3B cells in relation to free-radical toxicity in order to appreciate the defense capacities of these cells compared to data on normal hepatocytes. When Hep 3B cells were exposed to lindane, a known inducer of free-radical production, superoxide dismutase activity appeared as the best-adapted cellular parameter for early detection of the resulting free-radical toxicity.Abbreviations AAS atomic absorption spectrometry - CDNB 1-chloro-2,4-dinitrobenzene - DMEM Dulbecco's modified Eagle medium - GPx glutathione peroxidase - G.Red glutathione reductase - GSH reduced glutathione - GSSG glutathione disulfide - GST glutathione S-transferases - Prot proteins - SOD superoxide dismutase  相似文献   

15.
1. Antioxidant enzyme activity profiles in red cells of man, rabbit, quail, pig and rat have been investigated and found to exhibit striking differences. 2. No direct correlations between activities of "functionally coupled" enzymes (superoxide dismutase/catalase and glutathione peroxidase/glutathione reductase) were apparent, suggesting their independent regulation. 3. However, activities of red cell catalase and glutathione peroxidase in the various species studied were inversely correlated. 4. This was most evident in quail red cells, which showed negligible catalase activity but the highest levels of glutathione peroxidase of all the species examined. 5. A significant positive correlation between catalase and glutathione reductase activities was also demonstrated. 6. This may be relevant to the suggestion that the binding of NADPH to catalase may serve to decrease the intracellular inactivation of this reducing cofactor which may be limiting in the glutathione reductase reaction. 7. Basal levels of glutathione, which have been claimed to be limiting for the glutathione peroxidase reaction, were found to correlate positively with the activity of this enzyme in red cells. 8. Myocardial tissues also exhibited species-related differences in antioxidant enzyme profiles but these did not bear any obvious relationship to patterns observed in the corresponding red cells.  相似文献   

16.
1. In order to test the hypothesis that the alcoholic cardiomyopathy under partial catalase inhibition is associated with the activation of lipid peroxidation in cardiomyocytes (Panchenko et al., Experientia 43, 580-581, 1987), the effects of ethanol and catalase inhibitor 3-amino-1,2,4-triazole (aminotriazole) on rat heart and liver content of reduced glutathione and on the activity of enzymes related to peroxide metabolism: catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and glucose-6-phosphate dehydrogenase were investigated. 2. In accordance with the data obtained by Kino (J. molec, cell. Cardiol. 13, 5-12, 1981), when ethanol (36% of dietary calories) and aminotriazole were simultaneously administered an alcoholic cardiomyopathy developed while in the liver moderate fatty degeneration was revealed. 3. Chronic combined or separate administration of ethanol and aminotriazole was shown to increase glutathione concentration and glutathione-S-transferase activity in rat liver. In the groups of animals which received isocaloric carbohydrates in the diet instead of ethanol the liver glucose-6-phosphate dehydrogenase was increased. 4. Acute and chronic aminotriazole injections led to catalase inactivation and in the latter case also to inhibition of the liver superoxide dismutase and glutathione peroxidase activities. 5. Ethanol and aminotriazole treatment did not alter the glutathione level and the activity of all enzymes tested (except catalase) in rat myocardium.  相似文献   

17.
Cis-unsaturated fatty acids (c-UFAs) have been shown to be capable of decreasing the survival of macrophage tumor (AK-5) cells in vitro. This cytotoxic action of c-UFAs was found to be associated with an increase in free radical generation and lipid peroxidation process and a simultaneous decrease in cellular anti-oxidants such as superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione reductase, glutathione and vitamin E. In the present study, it was observed that c-UFAs such as gamma linolenic acid (GLA), arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can activate phospholipase C (PLC) and enhance diacylglycerol formation; all the fatty acids except alpha linolenic acid (ALA) increased the binding of phorbol dibutyrate acetate (PDBu) suggesting translocation of protein kinase C (PKC) and at the same time these fatty acids (especially GLA, AA, EPA and DHA) also enhanced PKC activity. AA, EPA and DHA decreased the activity of protein kinase A (PKA) both in the cytosol and particulate fractions whereas ALA and GLA enhanced the PKA activity in the particulate fractions; all the fatty acids except ALA reduced cyclic AMP levels and an enhanced phosphorylation of about 13 proteins of the nuclear fraction and about eight proteins of the plasma membrane fraction was noted in c-UFA treated AK-5 cells in vitro. These results suggest that c-UFAs can alter the activities of second messenger systems such as diacylglycerol and protein kinases and can phosphorylate both plasma membrane and nuclear proteins which are likely to be components of NADPH oxidase. Based on these results, it is suggested that fatty acids may mediate their cytotoxic action in part by modulating the expression of PKC. Activated PKC may then intensify the pro-oxidant state by augmenting NADPH oxidase, so inducing superoxide anion generation which may ultimately lead to cytolysis.  相似文献   

18.
Epidermal levels of enzymatic and non-enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), vitamin E (Vit E), ubiquinol (CoQ10H2), and reduced glutathione (GSH), as well as polyunsaturated fatty acids of phospholipids (PL-PUFA), were evaluated in the affected epidermis of 15 patients with active vitiligo (AVP) and in the corresponding epidermis of 15 healthy phototype matched controls. The epidermal levels of CoQ10H2, Vit E, GSH, and CAT activity were significantly reduced in AVP and were associated with a marked increase of oxidized glutathione, whereas SODs and GSH-Px activities and ubiquinone concentration remained similar to control values. Antioxidant deficiency, in particular the decline of lipophilic antioxidants, i. e., CoQ10H2 and Vit E, accounts well for PL-PUFA reduction observed in vitiligo epidermis, mainly affecting C18: 3 n-3, C20: 3 n-6, C20: 4 n-6, and C22: 6 n-3 fatty acids and suggesting the occurrence of a lipoperoxidative process. In conclusion, both an imbalance of the intracellular redox status and a significant depletion of enzymatic and non-enzymatic antioxidants feature the epidermis of AVP, and represent a fingerprint of an abnormal oxidative stress leading to epidermal cell injury.  相似文献   

19.
Antioxidant defense systems of two lipidopteran insect cell lines   总被引:1,自引:0,他引:1  
Spodoptera frugiperda Sf-9 (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) insect cell lines were found to contain unique assemblages of antioxidant enzymes. Specifically, the Sf-9 insect cell line contained Manganese and Copper-Zinc superoxide dismutase (MnSOD and CuZnSOD) for reducing the superoxide radical (O(2)(*-)) to hydrogen peroxide (H(2)O(2)) and ascorbate peroxidase (APOX) for reducing the resulting H(2)O(2) to H(2)O. Approximately one third of the total SOD activity was found to be MnSOD. The Tn-5B1-4 cells were also found to contain MnSOD (approximately two thirds of the total SOD activity), CuZnSOD and APOX activities. However, the Tn-5B1-4 cell line, in contrast to the Sf-9 cell line, contained catalase (CAT) activity for reducing H(2)O(2) to H(2)O. Both the Sf-9 and Tn-5B1-4 cell lines contained glutathione reductase and dehydroascorbic acid reductase activities for regenerating the reduced forms of glutathione and ascorbic acid, respectively. In addition, both cell lines contained glutathione S-transferase peroxidase activity towards hydroperoxides other than H(2)O(2). Finally, neither cell line contains the glutathione peroxidase activity that is ubiquitous in mammalian cells.  相似文献   

20.
The aim of this study was to investigate the effect of CO2 at various concentrations (1, 2.5 and 5%) on antioxidant enzymes and ginsenoside accumulation in Panax ginseng roots in 5 l airlift bioreactors (working volume 4 l). One and 2.5% CO2 was beneficial for root biomass accumulation, but 5% CO2 decreased the biomass. Ginsenoside concentration decreased with increasing concentration of CO2. No significant difference was observed in the malondialdehyde (MDA) content and lipoxygenase (LOX) activity between respective controls and CO2 treated roots. Antioxidant enzymes such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione reductase (GR), catalase (CAT), guaiacol peroxidase (G-POD) including reduced ascorbate and total glutathione were induced in CO2 exposed roots which emphasized the protective role of antioxidants against CO2 induced stress. Superoxide dismutase activity (SOD) which was induced after 15 days was significantly inhibited after 45 days. Glutathione-S-transferase (GST) and glutathione peroxidase (GPX) activities also increased when the roots were subjected to 1 and 2.5% CO2 compared to the respective controls but not at 5%. A higher reduced ascorbate to oxidized (ASC/DHA) ratio in CO2 treated root indicates the plant's ability to tolerate CO2 stress. These observations suggest that an increase in antioxidant enzymes may affect a defense response to the cellular damage induced by CO2. Probably, this increase could not stop the deleterious effects of CO2 concentration on ginsenoside concentration, but reduced stress severity and thereby allowing root growth to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号