首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since Epstein-Barr virus (EBV) infection of Burkitt's lymphoma (BL) cells in vitro reproduces many of the activation effects of EBV infection of primary B lymphocytes, mRNAs induced in BL cells have been cloned and identified by subtractive hybridization. Nine genes encode RNAs which are 4- to > 100-fold more abundant after EBV infection. Two of these, the genes for CD21 and vimentin, were previously known to be induced by EBV infection. Five others, the genes for cathepsin H, annexin VI (p68), serglycin proteoglycan core protein, CD44, and the myristylated alanine-rich protein kinase C substrate (MARCKS), are genes which were not previously known to be induced by EBV infection. Two novel genes, EBV-induced genes 1 and 2 (EBI 1 and EBI 2, respectively) can be predicted from their cDNA sequences to encode G protein-coupled peptide receptors. EBI 1 is expressed exclusively in B- and T-lymphocyte cell lines and in lymphoid tissues and is highly homologous to the interleukin 8 receptors. EBI 2 is most closely related to the thrombin receptor. EBI 2 is expressed in B-lymphocyte cell lines and in lymphoid tissues but not in T-lymphocyte cell lines or peripheral blood T lymphocytes. EBI 2 is also expressed at lower levels in a promyelocytic and a histiocytic cell line and in pulmonary tissue. These predicted G protein-coupled peptide receptors are more likely to be mediators of EBV effects on B lymphocytes or of normal lymphocyte functions than are genes previously known to be up-regulated by EBV infection.  相似文献   

2.
Sherrill JD  Miller WE 《Life sciences》2008,82(3-4):125-134
Members of the herpesvirus family, including human cytomegalovirus (HCMV) and Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8), encode G protein-coupled receptor (GPCR) homologs, which strongly activate classical G protein signal transduction networks within the cell. In animal models of herpesvirus infection, the viral GPCRs appear to play physiologically important roles by enabling viral replication within tropic tissues and by promoting reactivation from latency. While a number of studies have defined intracellular signaling pathways activated by herpesviral GPCRs, it remains unclear if their physiological function is subjected to the process of desensitization as observed for cellular GPCRs. G protein-coupled receptor kinases (GRK) and arrestin proteins have been recently implicated in regulating viral GPCR signaling; however, the role that these desensitization proteins play in viral GPCR function in vivo remains unknown. Here, we review what is currently known regarding viral GPCR desensitization and discuss potential biological ramifications of viral GPCR regulation by the host cell desensitization machinery.  相似文献   

3.
Epstein-Barr virus induced receptor 2 (EBI2), a Gαi-coupled G protein-coupled receptor, is a chemotactic receptor for B, T and dendritic cells (DC). Genetic studies have also implicated EBI2 as a regulator of an interferon regulatory factor 7 (IRF7)-driven inflammatory network (IDIN) associated with autoimmune diseases, although the corollary in primary type I IFN-producing cells has not been reported. Here we demonstrate that EBI2 negatively regulates type I IFN responses in plasmacytoid DC (pDCs) and CD11b+ myeloid cells. Activation of EBI2−/− pDCs and CD11b+ cells with various TLR ligands induced elevated type I IFN production compared to wild-type cells. Moreover, in vivo challenge with endosomal TLR agonists or infection with lymphocytic choriomeningitis virus elicited more type I IFNs and proinflammatory cytokines in EBI2−/− mice compared to normal mice. Elevated systemic cytokines occurred despite impaired ability of EBI2-deficient pDCs and CD11b+ cells to migrate from the blood to the spleen and peritoneal cavity under homeostatic conditions. As reported for other immune cells, pDC migration was dependent on the ligand for EBI2, 7α,25-dihydroxycholesterol. Consistent with a cell intrinsic role for EBI2, type I IFN-producing cells from EBI2-deficient mice expressed higher levels of IRF7 and IDIN genes. Together these data suggest a negative regulatory role for EBI2 in balancing TLR-mediated responses to foreign and to self nucleic acids that may precipitate autoimmunity.  相似文献   

4.
Oxysterols such as 7 alpha, 25-dihydroxycholesterol (7α,25-OHC) are natural ligands for the Epstein-Barr virus (EBV)-induced gene 2 (EBI2, aka GPR183), a G protein-coupled receptor (GPCR) highly expressed in immune cells and required for adaptive immune responses. Activation of EBI2 by specific oxysterols leads to chemotaxis of B cells in lymphoid tissues. While the ligand gradient necessary for this critical process of the adaptive immune response is established by a stromal cells subset here we investigate the involvement of the oxysterol/EBI2 system in the innate immune response. First, we show that primary human macrophages express EBI2 and the enzymes needed for ligand production such as cholesterol 25-hydroxylase (CH25H), sterol 27-hydroxylase (CYP27A1), and oxysterol 7α-hydroxylase (CYP7B1). Furthermore, challenge of monocyte-derived macrophages with lipopolysaccharides (LPS) triggers a strong up-regulation of CH25H and CYP7B1 in comparison to a transient increase in EBI2 expression. Stimulation of EBI2 expressed on macrophages leads to calcium mobilization and to directed cell migration. Supernatants of LPS-stimulated macrophages are able to stimulate EBI2 signaling indicating that an induction of CH25H, CYP27A1, and CYP7B1 results in an enhanced production and release of oxysterols into the cellular environment. This is a study characterizing the oxysterol/EBI2 pathway in primary monocyte-derived macrophages. Given the crucial functional role of macrophages in the innate immune response these results encourage further exploration of a possible link to systemic autoimmunity.  相似文献   

5.
To investigate functions of the consensus amino terminus of G protein-coupled receptor kinases (GRKs), two amino terminus-truncated mutants (delta30 or delta15) and two single-amino-acid mutants of conserved acidic residues (D2A or E7A) of human GRK1 were constructed and expressed in human embryonic kidney 293 cells. It was shown that truncated mutations and one single-point mutation (E7A) greatly decreased GRK1's activity to phosphorylate photoactivated rhodopsin (Rho*), whereas the abilities of these mutants to phosphorylate a synthetic peptide substrate and to translocate from cytosol to rod outer segments on light activation were unaffected. Further experiments demonstrated that the same truncated mutations (delta30 or delta15) of GRK2, representative of another GRK subfamily, also abolished the kinase's activity toward Rho*. The similar single-point mutation (E5A) of GRK2 heavily impaired its phosphorylation of Rho* but did not alter its ability to phosphorylate the peptide, and the G329-rhodopsin-augmented peptide phosphorylation by GRK2 (E5A) remained unchanged. Our data, taken together, suggest that the amino terminus as well as a conserved glutamic acid in the region of GRKs appears essential for their ability to functionally interact with G protein-coupled receptors.  相似文献   

6.
Infection of mice with murine gammaherpesvirus 68 (MHV-68) is a well-characterized small animal model for the study of gammaherpesvirus infection. MHV-68 belongs to the same herpesvirus family as herpesvirus saimiri (HVS) of New World squirrel monkeys and human herpesvirus 8 (HHV-8) (also referred to as Kaposi's sarcoma-associated herpesvirus [KSHV]). The open reading frame ORF74 of HVS, KSHV, and MHV-68 encodes a protein with homology to G protein-coupled receptors and chemokine receptors in particular. ORF74 of KSHV (human ORF74 [hORF74]) is highly constitutively active and has been implicated in the pathogenesis of Kaposi's sarcoma. MHV-68-encoded ORF74 (mORF74) is oncogenic and has been implicated in viral replication and reactivation from latency. Here, we show that mORF74 is a functional chemokine receptor. Chemokines with an N-terminal glutamic acid-leucine-arginine (ELR) motif (e.g., KC and macrophage inflammatory protein 2) act as agonists on mORF74, activating phospholipase C, NF-kappaB, p44/p42 mitogen-activated protein kinase, and Akt signaling pathways and inhibiting formation of cyclic AMP. Using (125)I-labeled CXCL1/growth-related oncogene alpha as a tracer, we show that murine CXCL10/gamma interferon-inducible protein 10 binds mORF74, and functional assays show that it behaves as an antagonist for this virally encoded G protein-coupled receptor. Profound differences in the upstream activation of signal transduction pathways between mORF74 and hORF74 were found. Moreover, in contrast to hORF74, no constitutive activity of mORF74 could be detected.  相似文献   

7.
Human APG1 gene is homologous to Drosophila methuselah gene associated with extended life span. A peptide (APG1: RNGKRSNRTLREE) corresponding to a predicted region of the intracellular third loop of G protein-coupled receptor coded in human APG1 gene could activate Gi protein alpha subunit directly. The three-dimensional molecular structure of the peptide in SDS-d25 micelles was determined by 2D 1H NMR spectroscopy. APG1 formed an alpha-helical structure at the C-terminal site and a positive charge cluster at the N-terminal site. The cluster was also found in several other Gi protein-coupled receptor peptides. Therefore, the positive charge cluster on the helical structure might be engaged in G protein activation.  相似文献   

8.
Several herpesviruses contain open reading frames (ORFs) that encode potential homologs of eucaryotic genes. Equine herpesvirus 2 (EHV-2) is a gammaherpesvirus related to other lymphotropic herpesviruses such as herpesvirus saimiri and Epstein-Barr virus. The E1 ORF of EHV-2, a G protein-coupled receptor homolog, shows 31 to 47% amino acid identity with known CC chemokine receptors. To investigate whether E1 may encode a functional receptor, we cloned the E1 ORF and expressed it in stably transfected cell lines. We report here the identification of the CC chemokine eotaxin as a functional ligand for the EHV-2 E1 receptor. Chemokines are likely to play a role in the regulation of immune functions in equine hosts during EHV-2 infection and, via interaction with E1, may affect viral replication and/or escape from immune responses.  相似文献   

9.
The peptide hormone relaxin is showing potential as a treatment for acute heart failure. Although it is known that relaxin mediates its actions through the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), little is known about the molecular mechanisms by which relaxin binding results in receptor activation. Previous studies have highlighted that the unique N-terminal low density lipoprotein class A (LDLa) module of RXFP1 is essential for receptor activation, and it has been hypothesized that this module is the true “ligand” of the receptor that directs the conformational changes necessary for G protein coupling. In this study, we confirmed that an RXFP1 receptor lacking the LDLa module binds ligand normally but cannot signal through any characterized G protein-coupled receptor signaling pathway. Furthermore, we comprehensively examined the contributions of amino acids in the LDLa module to RXFP1 activity using both gain-of-function and loss-of-function mutational analysis together with NMR structural analysis of recombinant LDLa modules. Gain-of-function studies with an inactive RXFP1 chimera containing the LDLa module of the human LDL receptor (LB2) demonstrated two key N-terminal regions of the module that were able to rescue receptor signaling. Loss-of-function mutations of residues in these regions demonstrated that Leu-7, Tyr-9, and Lys-17 all contributed to the ability of the LDLa module to drive receptor activation, and judicious amino acid substitutions suggested this involves hydrophobic interactions. Our results demonstrate that these key residues contribute to interactions driving the active receptor conformation, providing further evidence of a unique mode of G protein-coupled receptor activation.  相似文献   

10.
Recent studies have highlighted the emergence of a class of G protein-coupled receptors that are internalized in an arrestin-independent manner. In addition to demonstrating that the N-formyl peptide receptor belongs in this family, we have recently shown that recycling of the receptor requires the presence of arrestins. To further elucidate mechanisms of arrestin-dependent regulation of G protein-coupled receptor processing, we examined the effects of altering the receptor-arrestin complex on ternary complex formation and cellular trafficking of the N-formyl peptide receptor by studying two active arrestin-2 mutants (truncated arrestin-2 [1-382], and arrestin-2 I386A, V387A, F388A). Complexes between the N-formyl peptide receptor and active arrestins exhibited higher affinity in vitro than the complex between the N-formyl peptide receptor and wild-type arrestin and furthermore were observed in vivo by colocalization studies using confocal microscopy. To assess the effects of these altered interactions on receptor trafficking, we demonstrated that active, but not wild-type, arrestin expression retards N-formyl peptide receptor internalization. Furthermore, expression of arrestin-2 I386A/V387A/F388A but not arrestin-2 [1-382] inhibited recycling of the N-formyl peptide receptor, reflecting an expanded role for arrestins in G protein-coupled receptor processing and trafficking. Whereas the extent of N-formyl peptide receptor phosphorylation had no effect on the inhibition of internalization, N-formyl peptide receptor recycling was restored when the receptor was only partially phosphorylated. These results indicate not only that a functional interaction between receptor and arrestin is required for recycling of certain G protein-coupled receptors, such as the N-formyl peptide receptor, but that the pattern of receptor phosphorylation further regulates this process.  相似文献   

11.
The neuropeptide vasoactive intestinal peptide (VIP) strongly impacts on human pathophysiology and does so through interaction with class II G protein-coupled receptors named VIP pituitary adenylate cyclase-activating peptide (PACAP) receptors (VPACs). The molecular nature of VIP binding to receptors remains elusive. In this work, we have docked VIP in the human VPAC1 receptor by the following approach. (i) VIP probes containing photolabile residues in positions 6, 22, and 24 of VIP were used to photolabel the receptor. After receptor cleavage and Edman sequencing of labeled receptor fragments, it was shown that Phe6, Tyr22, and Asn24 of VIP are in contact with Asp107, Gly116, and Cys122 in the N-terminal ectodomain (N-ted) of the receptor, respectively. (ii) The structure of VIP was determined by NMR showing a central alpha helix, a disordered N-terminal His1-Phe6 segment and a 3(10) Ser25-Asn28 helix termination. (iii) A three-dimensional model of the N-ted of hVPAC1 was constructed by using the NMR structure of the N-ted of corticotropin-releasing factor receptor 2beta as a template. As expected, the fold is identified as a short consensus repeat with two antiparallel beta sheets and is stabilized by three disulfide bonds. (iv) Taking into account the constraints provided by photoaffinity, VIP was docked into the hVPAC1 receptor N-ted. The 6-28 fragment of VIP nicely lies in the N-ted C-terminal part, but the N terminus region of VIP is free for interacting with the receptor transmembrane region. The data provide a structural rationale to the proposed two-step activation mechanism of VPAC receptor and more generally of class II G protein-coupled receptors.  相似文献   

12.
Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) encodes a chemokine-like G protein-coupled receptor (KSHV-GPCR) that is implicated in the pathogenesis of Kaposi's sarcoma (KS). Since endothelial cells appear to be targets for the virus, we developed an in vitro mouse lung endothelial cell model in which KSHV-GPCR is stably expressed and KSHV-GPCR signaling was studied. In mouse lung endothelial cells: 1) KSHV-GPCR does not exhibit basal signaling through the phosphoinositide-specific phospholipase C pathway but inositol phosphate production is stimulated by growth-related oncogene alpha (Gro-alpha) via a pertussis toxin (PTX)-insensitive pathway; 2) KSHV-GPCR signals basally through a PTX-sensitive pathway leading to a lowering of intracellular cAMP level that can be lowered further by Gro alpha and increased by interferon gamma-inducible protein 10; 3) KSHV-GPCR stimulates phosphatidylinositol 3-kinase via a PTX-insensitive mechanism; and 4) KSHV-GPCR activates nuclear factor-kappa B (NF-kappa B) by a PTX-sensitive G beta gamma subunit-mediated pathway. These data show that KSHV-GPCR couples to at least two G proteins and initiates signaling via at least three cascades in endothelial cells thereby increasing the complexity of regulation of endothelial cell function by KSHV-GPCR that may occur during viral infection.  相似文献   

13.
14.
A new human herpesvirus was recently identified in all forms of Kaposi's sarcoma (Kaposi's sarcoma-associated herpesvirus [KSHV] or human herpesvirus 8), as well as in primary effusion (body cavity-based) lymphomas (PELs). A 12.3-kb-long KSHV clone was obtained from a PEL genomic library. Sequencing of this clone revealed extensive homology and colinearity with the right end of the herpesvirus saimiri (HVS) genome and more limited homology to the left end of the Epstein-Barr virus genome. Four open reading frames (ORFs) were sequenced and characterized; these are homologous to the following viral and/or cellular genes: (i) Epstein-Barr virus membrane antigen p140 and HVS p160, (ii) HVS and cellular type D cyclins, (iii) HVS and cellular G protein-coupled receptors, and (iv) HVS. Since there is considerable evidence that cyclin D1 and some G protein-coupled receptors contribute to the development of specific cancers, the presence of KSHV homologs of these genes provides support for a role for KSHV in malignant transformation. All ORFs identified are transcribed in PELs and Kaposi's sarcoma tissues, further suggesting an active role for KSHV in these diseases.  相似文献   

15.
The N-formyl peptide receptor-like 1 (FPRL1) is a G protein-coupled receptor (GPCR) that transmits intracellular signals in response to a variety of agonists, many of them being clearly implicated in human pathology. beta-arrestins are adaptor proteins that uncouple GPCRs from G protein and regulate receptor internalization. They can also function as signal transducers through the scaffolding of signaling molecules, such as components of the extracellular signal-regulated kinase (ERK) cascade. We investigated the role of beta-arrestins in ligand-induced FPRL1 internalization and signaling. In HEK293 cells expressing FPRL1, fluorescence microscopy revealed that agonist-stimulated FPRL1 remained co-localized with beta-arrestins during endocytosis. Internalization of FPRL1, expressed in a mouse embryonic fibroblast (MEF) cell line lacking endogenous beta-arrestins, was highly compromised. This distinguishes FPRL1 from the prototypical formyl peptide receptor FPR that is efficiently internalized in the absence of beta-arrestins. In both HEK293 and MEF cells, FPRL1-mediated ERK1/2 activation was a rapid and transient event. The kinetics and extent of ERK1/2 activation were not significantly modified by beta-arrestin overexpression. The pattern of FPRL1-mediated ERK1/2 activation was similar whether cells express or not beta-arrestins. Furthermore, treatment of the FPRL1 expressing cells with pertussis toxin inhibited ERK1/2 activation in MEF and in HEK293 cells. These results led us to conclude that activation of ERK1/2 mediated by FPRL1 occurs primarily through G protein signaling. Since beta-arrestin-mediated signaling has been observed essentially for receptors coupled to G proteins other than G(i), this may be a characteristic of G(i) protein-coupled chemoattractant receptors.  相似文献   

16.
Human LL-37 is a multifunctional antimicrobial peptide that promotes inflammation, angiogenesis, wound healing, and tumor metastasis. Most effects of LL-37 are mediated via the activation of the cell surface G protein-coupled receptor FPR2 on leukocytes and endothelial cells. Although LL-37 induces chemotaxis, degranulation, and chemokine production in mast cells, the receptor involved and the mechanism of its regulation remain unknown. MrgX2 is a member of Mas-related genes that is primarily expressed in human dorsal root ganglia and mast cells. We found that a human mast cell line LAD2 and CD34(+) cell-derived primary mast cells, which natively express MrgX2, responded to LL-37 for sustained Ca(2+) mobilization and substantial degranulation. However, an immature human mast cell line, HMC-1, that lacks functional MrgX2 did not respond to LL-37. shRNA-mediated knockdown of MrgX2 in LAD2 mast cell line and primary CD34(+) cell-derived mast cells caused a substantial reduction in LL-37-induced degranulation. Furthermore, mast cell lines stably expressing MrgX2 responded to LL-37 for chemotaxis, degranulation, and CCL4 production. Surprisingly, MrgX2 was resistant to LL-37-induced phosphorylation, desensitization, and internalization. In addition, shRNA-mediated knockdown of the G protein-coupled receptor kinases (GRK2 and GRK3) had no effect on LL-37-induced mast cell degranulation. This study identified MrgX2 as a novel G protein-coupled receptor for the antibacterial peptide LL-37 and demonstrated that unlike most G protein-coupled receptors it is resistant to agonist-induced receptor phosphorylation, desensitization, and internalization.  相似文献   

17.
Glycoprotein hormone receptors, including LH receptor, FSH receptor, and TSH receptor, belong to the large G protein-coupled receptor (GPCR) superfamily but are unique in having a large ectodomain important for ligand binding. In addition to two recently isolated mammalian LGRs (leucine-rich repeat-containing, G protein-coupled receptors), LGR4 and LGR5, we further identified two new paralogs, LGR6 and LGR7, for glycoprotein hormone receptors. Phylogenetic analysis showed that there are three LGR subgroups: the known glycoprotein hormone receptors; LGR4 to 6; and a third subgroup represented by LGR7. LGR6 has a subgroup-specific hinge region after leucine-rich repeats whereas LGR7, like snail LGR, contains a low density lipoprotein (LDL) receptor cysteine-rich motif at the N terminus. Similar to LGR4 and LGR5, LGR6 and LGR7 mRNAs are expressed in multiple tissues. Although the putative ligands for LGR6 and LGR7 are unknown, studies on single amino acid mutants of LGR7, with a design based on known LH and TSH receptor gain-of-function mutations, indicated that the action of LGR7 is likely mediated by the protein kinase A but not the phospholipase C pathway. Thus, mutagenesis of conserved residues to allow constitutive receptor activation is a novel approach for the characterization of signaling pathways of selective orphan GPCRs. The present study also defines the existence of three subclasses of leucine-rich repeat-containing, G protein-coupled receptors in the human genome and allows future studies on the physiological importance of this expanding subgroup of GPCR.  相似文献   

18.
To dissect the interaction between beta-arrestin ((beta)arr) and family B G protein-coupled receptors, we constructed fusion proteins between the glucagon-like peptide 1 receptor and (beta)arr2. The fusion constructs had an increase in apparent affinity selectively for glucagon, suggesting that (beta)arr2 interaction locks the receptor in a high-affinity conformation, which can be explored by some, but not all, ligands. The fusion constructs adopted a signaling phenotype governed by the tethered (beta)arr2 with an attenuated G protein-mediated cAMP signal and a higher maximal internalization compared with wild-type receptors. This distinct phenotype of the fusion proteins can not be mimicked by coexpressing wild-type receptor with (beta)arr2. However, when the wild-type receptor was coexpressed with both (beta)arr2 and G protein-coupled receptor kinase 5, a phenotype similar to that observed for the fusion constructs was observed. We conclude that the glucagon-like peptide 1 fusion construct mimics the natural interaction of the receptor with (beta)arr2 with respect to binding peptide ligands, G protein-mediated signaling and internalization, and that this distinct molecular phenotype is reminiscent of that which has previously been characterized for family A G protein-coupled receptors, suggesting similarities in the effect of (beta)arr interaction between family A and B receptors also at the molecular level.  相似文献   

19.
20.
Leucine-rich repeat-containing, G protein-coupled receptors (LGRs) represent a unique subgroup of G protein-coupled receptors with a large ectodomain. Recent studies demonstrated that relaxin activates two orphan LGRs, LGR7 and LGR8, whereas INSL3/Leydig insulin-like peptide specifically activates LGR8. Human relaxin 3 (H3 relaxin) was recently discovered as a novel ligand for relaxin receptors. Here, we demonstrate that H3 relaxin activates LGR7 but not LGR8. Taking advantage of the overlapping specificity of these three ligands for the two related LGRs, chimeric receptors were generated to elucidate the mechanism of ligand activation of LGR7. Chimeric receptor LGR7/8 with the ectodomain from LGR7 but the transmembrane region from LGR8 maintains responsiveness to relaxin but was less responsive to H3 relaxin based on ligand stimulation of cAMP production. The decreased ligand signaling was accompanied by decreases in the ability of H3 relaxin to compete for (33)P-relaxin binding to the chimeric receptor. However, replacement of the exoloop 2, but not exoloop 1 or 3, of LGR7 to the chimeric LGR7/8 restored ligand binding and receptor-mediated cAMP production. These results suggested that activation of LGR7 by H3 relaxin involves specific binding of the ligand to both the ectodomain and the exoloop 2, thus providing a model with which to understand the molecular basis of ligand signaling for this unique subgroup of G protein-coupled receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号