首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the three-dimensional finite element method is used to analyse the advantages of the double symmetric composite repair compared to the single one in aircraft structures by analysing the mass again between the two techniques. This gain is defined as the ratio between the thickness of the double and single patches giving the same stress intensity factor (SIF) at the crack tip. The obtained results show that the mass gain resulting from the use of the double symmetric repair is important because of the double stress absorption. It also shown that, the adhesive properties must be optimised in order to improve the advantages of double symmetric composite repair.  相似文献   

2.
This paper concerns a numerical study by the finite element method of the cracked structure repaired by single and double bonded composite patches. The stress intensity factor is used as fracture criteria. The obtained results showed the advantage of the double patch compared to single on the reduction of the stress intensity factor at the crack tip. The effects of the properties of the plate and the patch and the adhesive on the beneficial effect of the double patch are highlighted. The adhesive properties must be optimised in order to increase the advantage of the double patch and to avoid the adhesive failure. The patch properties have a significant effect on the beneficial effects of the double symmetric patch.  相似文献   

3.
The optimization of the patch shape of bonded composite repair in aircraft structures is a good way to improve the repair performance. In this study, the three-dimensional finite element method is used to compare the repair performance of patches with rectangular and trapezoidal shapes in aircraft structures. The comparison is done by analysing the stress intensity factor (SIF) at the tip of repaired crack and the distribution of the adhesive stresses for the two patch shapes. The obtained results show that, when the crack length is ranged from 5 to 20 mm, the trapezoidal shape presents lower stress intensity factor at the crack tip, which is beneficial for the fatigue life and lower adhesives stresses, which is beneficial for the repair durability. These advantages disappear when the crack length reaches the value of 40 mm. It is also shown that the use of the trapezoidal shape reduce the mass of the patch, which can reduce the repair cost.  相似文献   

4.
In this study, the effects of the adhesive disband on the efficiency of bonded composites repair in aircraft structures were analyzed. The three-dimensional finite element method was used to achieve the objectives of the study. The stress intensity factor at the crack tip was chosen as fracture criteria. The analysis was extended to the single and double symmetric bonded composite patches. The obtained results show that the repair efficiency is negatively influenced if the adhesive disband growths perpendicularly to the crack. In the case of double symmetric patch, the presence of double adhesive disband highly decreases the repair efficiency and increases the risk of adhesion failure between the composite patch and the cracked aluminum structures.  相似文献   

5.
The adhesively bonded composite patch repair technique has been used to restore or extend the service life of the cracked aluminium structural components because of its efficiency. In this study, the finite element method is used to analyse the performance of the different bonded composite patches at a semicircular lateral notch and the repair of cracks emanating from this kind of notch. The knowledge of the stress distribution in the neighbourhood of the cracks is important for the analysis of their repair according to the geometry of the patch. The effects of the mechanical and geometrical properties on the variation of the stress intensity factor in the crack tip were highlighted. The effects of the adhesive properties and of the patch size on the stress intensity factor variation at the crack tip in mode I were also highlighted. The comparison between the double and single patch repairs is also given in this study. The results obtained show that the stress intensity factor of the crack tip repaired by two composite patches, is reduced to a half compared to the one that is repaired only by one patch. The orientation of fibres possessing a higher rigidity perpendicularly to the crack propagation considerably influences the reduction of the stress intensity factor. The adhesive properties must be optimised in order to increase the performance of the patch repair or the reinforcement.  相似文献   

6.
In this paper, we investigated the crack growth behaviour of cracked thin aluminium plate repaired with bonded composite patch. The finite element method is used to study the performance of the bonded composite reinforcement or repair for reducing the stress concentration at a semicircular lateral notch and repairing cracks emanating from this kind of notch. The effects of the adhesive properties and the patch size on the stress intensity factor variation at the crack tip in mode I were highlighted. The obtained results show that the stress concentration factor at the semicircular notch root and the stress intensity factor of a crack emanating from notch are reduced with the increase of the diameter and the number of the semicircular patch. The maximal reduction of stress intensity factor is about 42% and 54%, respectively, for single and double patch. However, the gain in the patch thickness increases with the increase of the crack length and it decreases when the patch thickness increases. The adhesive properties must be optimised in order to increase the performance of the patch repair or reinforcement.  相似文献   

7.
Analysis of cracked steel members reinforced by pre-stress composite patch   总被引:1,自引:0,他引:1  
Pre‐stress bonded composite patch is a promising technique to reinforce steel member damaged by fatigue. The effectiveness of this technique was verified by fatigue tests on notched steel plates. Results showed that the application of carbon fibre reinforced plastic (CFRP) strips and, eventually, the introduction of a compressive stress by pretension of the CFRP strips prior to bonding produced a significant increment of the remaining fatigue life. In this paper, the stress intensity factor in the notched plates is computed by a two‐dimensional finite element model in connection with the three‐layer technique in order to reduce the computational effort. Due to high stress concentration at the plate crack tip, debond is assumed at the adhesive–plate interface. The goal is to illustrate the influence of some reinforcement parameters such as the composite strip stiffness, the pre‐stress level, the adhesive layer thickness and the size of the debonded region on the effectiveness of the composite patch reinforcement.  相似文献   

8.
In this study, the three-dimensional finite element method is used to analyze the effects of the patch shape on the efficiency end the durability of bonded composite repairs of aircraft structures. The stress intensity factor at the crack tip is used as fracture criteria. The determination of this factor allows us to estimate the repair efficiency. The analysis of the stresses distribution in the adhesive layer allows us to estimate the durability of the adhesion between the damaged plate and the composite patch. The obtained results show that the repair performances are closely related to the patch shape. It was demonstrated that the rectangular shape of the patch could be improved using an “H” shape of the patch. This last shape could also be improved using an arrow shape.  相似文献   

9.
In this study, the distribution of the thermal residual stresses due to the adhesive curing in bonded composite repair is analysed using the finite element method. The computation of these stresses comprises all components of the structures: cracked plate, composite patch and adhesive layer. In addition, the influence of these residual stresses on the repair performance is highlighted by analysing their effect on the stress intensity factor at the crack tip. The obtained results show that the normal thermal stresses in the plate and the patch are important and the shear stresses are less significant. The level of the adhesive thermal stresses is relatively high. The presence of the thermal stresses increases the stress intensity factor at the crack tip, what reduce the repair performance.  相似文献   

10.
In this study, experimental and numerical investigations were carried out in order to compare the performances of composite and metallic patches for repairing aircraft structures. In the experimental part, an accelerating aging of the composite was realized by the immersion of the composite patch in distilled water. The fatigue lives of notched plates repaired with aged composite patch, non-aged composite patch and aluminum patch were measured. The obtained results show that the composite patch is more beneficial than the aluminum patch if there is no significant water absorption by the composite. In the numerical part, the stress intensity factor at the crack tip was computed for aged and non-aged composite patches and for aluminum patches. The numerical results confirm the experimental ones, the reduction of the stress intensity factor by the composite patch is more significant than the aluminum patch but the water absorption reduces significantly the repair efficiency.  相似文献   

11.
Adhesively bonded composite patch repair has been widely used to restore or extend the service life of cracked structural components due to its effectiveness to mechanical repair technique. In this work, the finite element method is applied to analyse the performance of the bonded composite patch for repairing cracks emanating from semicircular notch root in pure mode II. The stress intensity factor was computed at the crack tip repaired using a boron/epoxy patch for different orientation of fibers, taking into account the disbond. In this case, the increase of a patch thickness reduces the negative effects of disbond. When this effect is significant between the patch and the plate, it reduces the repair effectiveness. The maximum reduction obtained by using a boron/epoxy of fibers in the x-direction is of the order of 20% more important compared to a patch having its fibers in the y-direction. The stress intensity factor exhibits an asymptotic behaviour as the disbond size increases.  相似文献   

12.
In this study, the finite element method is used to analyse the behaviour of repaired cracks with bonded composite patches in mode I and mixed mode by computing the stress intensity factors at the crack tip. The effects of the patch size and the adhesive properties on the stress intensity factors variation were highlighted. The plot of the stress intensity factors according to the crack length in mode I, shows that the stress intensity factor exhibits an asymptotic behaviour as the crack length increases. In mixed mode, the obtained results show that the Mode I stress intensity factor is more affected by the presence of the patch than that of mode II.  相似文献   

13.
Bonded composite repair has been recognized as an efficient and economical method to extend the fatigue life of cracked aluminium components. In this work, the finite element method is applied to analyze the central crack’s behaviour repaired by a boron/epoxy composite patch. The knowledge of the stress distribution in the neighbourhood of cracks has an importance for the analysis of their repair according to the patch geometry. The effects of mechanical and geometrical properties of the patch on the variation of the stress intensity factor at the crack tip were highlighted. The obtained results show that the stress intensity factor at the repaired crack with composite patch of height 2c/3 is reduced about 5% compared to cracks repaired with octagonal patch of size c. For patch height of c/3 the reduction is about 7%. The adhesive properties must be optimised in order to increase the repair performances and to avoid the adhesive failure.  相似文献   

14.
In this study, we investigated the fatigue crack growth behavior of cracked aluminum plate repaired with bonded composite patch especially in thick plate. Adhesively bonded composite patch repair technique has been successfully applied to military aircraft repair and expanded its application to commercial aircraft industry recently. Also this technique has been expanded its application to the repair of load bearing primary structure from secondary structure repair. Therefore, a through understanding of crack growth behavior of thick panel repaired with bonded composite patch is needed. We investigated the fatigue crack growth behavior of thick panel repaired with bonded composite patch using the stress intensity factor range (ΔK) and fatigue crack growth rate (da/dN). The stress intensity factor of patched crack was determined from experimental result by comparing the crack growth behavior of specimens with and without repair. Also, by considering the three-dimensional (3D) stress state of patch crack, 3D finite element analyses were performed to obtain the stress intensity factor of crack repaired by bonded composite patch. Two types of crack front modeling, i.e. uniform crack front model and skew crack front model, were used. The stress intensity factor calculated using FEM was compared with the experimentally determined values.  相似文献   

15.
In this study, the crack growth behaviour of an aluminium plate cracked at the tip and repaired with a bonded boron/epoxy composite patch in the case of full-width disbond was investigated. This effect is the imperfection which could result during the bonded patch of the repaired structure. Disbonds of various sizes and situated at different positions with respect to the crack tip as well as the effect of adhesive and patch thickness on repair performance were examined. An analysis procedure involving the efficient finite element modelling applied to cracked plate, adhesive and composite patch was used to compute the stress intensity factors. The crack growth rate is dominated by the stress intensity factor near the location and size of the pre-existing disbonds. The cracked plate and disbond propagation result in an increase in the patch deformation. The patch does not have an influence on the crack growth when the ratio 2a/dR exceeds 0.8.  相似文献   

16.
The fatigue and fracture performance of a cracked plate can be substantially improved by providing patches as reinforcements. The effectiveness of the patches is related to the reduction they cause in the stress intensity factor (SIF) of the crack. So, for reliable design, one needs an accurate evaluation of the SIF in terms of the crack, patch and adhesive parameters. In this investigation, a centrally cracked large plate with a pair of symmetric bonded narrow patches, oriented normally to the crack line, is analysed by a continuum approach. The narrow patches are treated as transversely flexible line members. The formulation leads to an integral equation which is solved numerically using point collocation. The convergence is rapid. It is found that substantial reductions in SIF are possible with practicable patch dimensions and locations. The patch is more effective when placed on the crack than ahead of the crack. The present analysis indicates that a little distance inwards of the crack tip, not the crack tip itself, is the ideal location, for the patch.  相似文献   

17.
To gain insight into the shielding processes in quasi-brittle materials, in situ crack propagation and crack profile measurements were performed inside the scanning electron microscope (SEM). Crack tip shielding phenomena were studied in monolithic alumina and in SiC fibre-reinforced alumina matrix composites as a function of fibre coatings. The crack in the fibre-reinforced composite samples is bridged by a row of fibres which contains a fibre area fraction of 10%. The applied stress intensity factor necessary to extend the crack in the composite materials increased 25% for the gold coated fibre-reinforced alumina matrix composites and 13% for the polymer-coated fibre-reinforced composites, compared to the monolithic samples. Crack extension in the monolithic samples and in the fibre-reinforced composites occurred after the crack opening displacements close to the crack tip approached the critical crack tip profile corresponding to the intrinsic toughness of alumina. A hypothesis on the effect of closure stresses on crack profile shape and net toughness has been developed. Furthermore, crack profiles revealed that grain bridging in the vicinity of the fibres was operative in the fibre-reinforced composites at stress intensity factors far exceeding the critical stress intensity factor of the monolithic matrix material. The additional grain bridging in the vicinity of the fibres has never been reported and can only be revealed through crack profile measurements. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

18.
In this study the finite element method is used to analyse the notch effect and the behaviour of notch cracks in adhesively composite laminate under tension by computing respectively the stress concentration factor at the notch tip which characterize the notch strength and the stress intensity factor at the crack tip which characterize the resistance to the crack propagation. The effects of the adhesive properties and fiber orientation on the variation of both stress concentration and stress intensity factors are highlighted. The obtained results show that the notch strength is reduced in the layer of the laminate of which the fiber orientation is in the applied load direction; the resistance to the crack propagation is also reduced in this type of layer. The stress intensity factor at the tip of notch crack exhibits an asymptotic behaviour as the crack length increases.  相似文献   

19.
For the purpose of clarifying the micro fracture of continuous fiber unidirectionally reinforced composite materials, the problem of an edge crack perpendicular to a long reinforced phase is considered on the basis of the plane strain theory of elasticity. The stress intensity factor at the tip of the crack, and the stresses on the interface between the matrix and the reinforced phase and in the reinforced phase are discussed. In the analysis, the method of continuous distributions of dislocations is used. Then, a singular integral equation is derived and is solved by the technique developed by Erdogan and Gupta. From the numerical results it was concluded that:
  1. The stress intensity factor decreases monotonically as the crack tip approaches the reinforced phase. That is, the presence of the reinforced phase can result in crack arrest.
  2. When the crack tip exists near the reinforced phase, the normal stress on the interface between the matrix and the reinforced phase has a maximum at the intersection of the extension of the edge crack and the reinforced phase, while the shear stress on the interface and the normal stress in the reinforced phase take, respectively, maxima at symmetric points with respect to the crack surface in the immediate vicinity of the intersection.
  3. The maximum values of the stresses on the interface and in the reinforced phase increase monotonically as the crack tip approaches the reinforced phase.
  相似文献   

20.
The application of carbon fibre reinforced polymer composites externally bonded on cracked steel plates is an effective system in extending the fatigue life of these structural elements. In particular, composite patches bonded on the crack tip region reduce the stress concentration and the crack opening displacement, leading to an extension of the fatigue life. In order to additionally show the effectiveness of this kind of reinforcing technique, experimental tests were performed at the laboratories of the Politecnico di Milano. Fatigue tests were executed on single edge notched tension specimens reinforced by pultruded strips bonded to a single side (non‐symmetric reinforcement). Different patch configurations (reinforcement stiffness and patch location) and initial damage levels were considered as parameters influencing the repair effectiveness in extending the fatigue life. The results showed that the use of carbon fibre reinforced polymer materials bonded around the tip region allows extending the fatigue life for different amount of initial damage level. Finally, this work provides some useful information for the more efficient repair configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号