首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
稠密气固两相流动过程模拟的改进模型与应用   总被引:2,自引:0,他引:2  
刘向军  徐旭常 《动力工程》2004,24(2):234-239
提出了模拟稠密气固两相流动的改进模型。湍流流场采用改进的k-ε-εe模型,颗粒的聚合效应采用聚合力的当量直径折算模型计算。将颗粒团作为离散相,研究颗粒团的运动、碰撞、破碎与合并。应用上述模型数值模拟了循环流化床内的稠密气固两相流动。得到了床内气相速度、颗粒团分布、颗粒浓度分布及颗粒团大小分布等详细两相流场信息。计算结果合理,与前人实验结果相符。模拟结果详细揭示了循环流化床内稠密气固两相流动的基本特征。图8表2参8  相似文献   

2.
在提升管直径为100mm、高为6000mm,立管直径为44mm、高为3000mm,热解室的截面积为200mm×200mm、高770mm的循环流化床煤燃烧/热解双反应器冷态实验装置上,考察了提升管中的表观气速、系统循环量以及加到热解室里的松动气量等因素对立管中的压力梯度、气固相对流动速度等的影响.在实验范围内,立管内的流动形式主要为气固并流下行移动床流动.随着表观气速的增加,立管中负压差梯度逐渐减小,最终基本保持不变;随着循环量的增大,立管内的负压差梯度及气固相对速度也随之增大;加到热解室内的松动气对立管内气固流动状态影响比较复杂,在提升管内表观气速及立管底部阀门开度一定的情况下,随着松动气量的增加,立管内会出现从负压差流动到正压差流动的转变.而在松动气量保持一定时,随着提升管内表观气速的增大,同样的情况也会出现.  相似文献   

3.
烟气脱硫循环流化床内气固流动的PDA试验研究   总被引:3,自引:2,他引:3       下载免费PDF全文
提出了由两级分离系统组成的循环流化床烟气脱硫工艺。用粒子动态分析仪(PDA)对床内不同高度方向上颗粒横向、轴向速度、颗粒粒径及浓度分布进行了测量,得到了床内气固流动的瞬时脉动特性以及总体气固流动行为,试验结果为烟气脱硫新工艺的结构设计及优化提供了依据。  相似文献   

4.
循环流化床返料系统中立管的设计   总被引:4,自引:0,他引:4  
王擎  孙键 《动力工程》1998,18(4):41-46
根据大量参考文献及作者的经验,分析了立管内气固混合物的流动状态和稳定运行条件,提出了循环流化床锅炉返料系统中立管的设计模型和主要设计参数的确定。利用中方便地进行立管的设计和预测立管内气固混合物的流动状态,并可供循环流化床锅炉的设计和运行单位参考。  相似文献   

5.
循环流化床主床压降的研究   总被引:3,自引:0,他引:3  
李荫堂  李军 《动力工程》1994,14(3):34-38
本文从气固流动理论及因次分析两方面研究了循环流化床中主床沿床高方向的压力损失。作者认为,压降及其分布的主要影响因素是气固携带比、气体空截面速度和颗粒浓度分布。本文作者还提出了循环流化床主床压降的计算式;用研究者们不同条件下的关联式或数据进行了证,结果具有较好的一致性。图6参12  相似文献   

6.
燃煤循环流化床模型与试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
沈来宏 《热能动力工程》2000,15(3):249-251,259
利用循环流化床内气-固两相流动等基础方面的研究成果,根据本文床内气固浓-淡流动模型,建立适用不同结构参数的循环流化床燃烧模型,考虑了床内气体、固体颗粒的返混、循环过程,以及煤燃烧、NO的生成和分解、颗粒磨损等因素。在循环流化床燃烧试验台上进行实验研究,模型仿真结果和实验数据吻合良好,表明气固两相浓-淡流动模型所建立的循环流化床燃烧系统模型可以正确地模拟循环流化床的燃烧过程。  相似文献   

7.
循环流化床因其气固混合剧烈,气固相对滑移速度大,床内温度均一,而广泛应用于化工和能源领域。本文利用FFT方法对循环流化床内的颗粒浓度、颗粒速度及颗粒动量3种时间序列进行了大量的概率分析及统计,系统地研究了循环流化床内颗粒湍动特性,研究结果将对循环床设计和运行产生重要影响。  相似文献   

8.
矩形平壁循环流化床冷态流动特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在循环流化床冷态试验台架上,以空气为流化介质,砂子(0.1 ̄0.45mm)为床料,采用反射式光导纤维探针,分别测定了铅轴向和径向的颗粒浓度分布,特别是考察了矩形截面循环床边角对气固两相流动的影响,对径向颗粒浓度分布的影响,考察了壁面附近的气固流动。引入了时序分析方法对采样数据建立了参数模型。实验结果对加深循环流化床内气固两相流动的理解具有重要意义。  相似文献   

9.
赵建  索沂生 《动力工程》2000,20(3):678-684
建立了新型循环双流化床锅炉燃烧系统的通用动态数学模型,考虑了双流化床的流体动力、燃烧和传热特性,反映了双流化床内部的气固相流动、宽筛分颗粒燃烧、气体化学反应、床内传热、系统压力平衡等物理化学过程。在仿真计算时,对传统计算方法作了改进,能满足实时仿真的要求。图4参5  相似文献   

10.
向上射流悬浮床内气固两相流场实验研究   总被引:6,自引:0,他引:6  
为开发先进的低阻力循环悬浮床烟气脱硫工艺及技术 ,建立了实验段截面积为 5 0 0 mm× 5 0 0 mm的悬浮床气固相流动的冷态实验装置。床内空气的表观速度可达到 3.5 m/ s。设计了两种底部射流进气结构 ,控制床内的颗粒浓度在适合于 PDA测量的范围内 (约 5 0 g/ m3)。用颗粒动态分析仪 (PDA)测量了悬浮床内气固两相流动的结构 ,确定了不同表观气速和不同进气结构条件下的两相流场的特点。实验结果表明 ,实验段内无论是颗粒相还是气相 ,都明显存在平流区、主流区和回流区三个区域 ,而且颗粒相和气相的速度分布很相似。还描述了床内的颗粒脉动速度变化情况及床内的物料堆积情况。实验结果对循环悬浮床反应器的结构优化设计有参考价值  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
13.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

14.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

15.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

16.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

17.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

18.
Karaha–Telaga Bodas is a partially vapor-dominated, fracture-controlled geothermal system located adjacent to Galunggung Volcano in western Java, Indonesia. The geothermal system consists of: (1) a caprock, ranging from several hundred to 1600 m in thickness, and characterized by a steep, conductive temperature gradient and low permeability; (2) an underlying vapor-dominated zone that extends below sea level; and (3) a deep liquid-dominated zone with measured temperatures up to 353 °C. Heat is provided by a tabular granodiorite stock encountered at about 3 km depth. A structural analysis of the geothermal system shows that the effective base of the reservoir is controlled either by the boundary between brittle and ductile deformational regimes or by the closure and collapse of fractures within volcanic rocks located above the brittle/ductile transition. The base of the caprock is determined by the distribution of initially low-permeability lithologies above the reservoir; the extent of pervasive clay alteration that has significantly reduced primary rock permeabilities; the distribution of secondary minerals deposited by descending waters; and, locally, by a downward change from a strike-slip to an extensional stress regime. Fluid-producing zones are controlled by both matrix and fracture permeabilities. High matrix permeabilities are associated with lacustrine, pyroclastic, and epiclastic deposits. Productive fractures are those showing the greatest tendency to slip and dilate under the present-day stress conditions. Although the reservoir appears to be in pressure communication across its length, fluid, and gas chemistries vary laterally, suggesting the presence of isolated convection cells.  相似文献   

19.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

20.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号