首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
The synthesis of a pyrimidine analog, 3′‐deoxy‐3′‐[18F]‐fluoro‐1‐β‐D ‐xylofuranosyluracil ([18F]‐FMXU) is reported. 5‐Methyluridine 1 was converted to its di‐methoxytrityl derivatives 2 and 3 as a mixture. After separation the 2′,5′‐di‐methoxytrityluridine 2 was converted to its 3′‐triflate 4 followed by derivatization to the respective N3t‐Boc product 5 . The triflate 5 was reacted with tetrabutylammonium[18F]fluoride to produce 6 , which by acid hydrolysis yielded compound 7 . The crude preparation was purified by HPLC to obtain the desired product [18F]‐FMXU. The radiochemical yields were 25–40% decay corrected (d. c.) with an average of 33% in four runs. Radiochemical purity was >99% and specific activity was >74 GBq/µmol at the end of synthesis (EOS). The synthesis time was 67–75 min from the end of bombardment (EOB). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
To synthesize 18F‐labeled positron emission tomography (PET) ligands, reliable labeling techniques inserting 18F into a target molecule are necessary. The 18F‐fluorobenzene moiety has been widely utilized in the synthesis of 18F‐labeled compounds. The present study utilized [18F]‐labeled aniline as intermediate in [18F]‐radiolabeling chemistry for the facile radiosynthesis of 4‐amino‐N‐(3‐chloro‐4‐fluorophenyl)‐N′‐hydroxy‐1,2,5‐oxadiazole‐3‐carboximidamide ([18F]IDO5L) as indoleamine 2,3‐dioxygenase 1 (IDO1) targeted tracer. IDO5L is a highly potent inhibitor of IDO1 with low nanomolar IC50. [18F]IDO5L was synthesized via coupling [18F]3‐chloro‐4‐fluoroaniline with carboximidamidoyl chloride as a potential PET probe for imaging IDO1 expression. Under the optimized labeling conditions, chemically and radiochemically pure (>98%) [18F]IDO5L was obtained with specific radioactivity ranging from 11 to 15 GBq/µmol at the end of synthesis within ~90 min, and the decay‐corrected radiochemical yield was 18.2 ± 2.1% (n = 4).  相似文献   

3.
Synthesis of 2′‐deoxy‐2′‐[18F]fluoro‐5‐methyl‐1‐β‐D‐arabinofuranosyluracil ([18F]‐FMAU) is reported. 2‐Deoxy‐2‐[18F]fluoro‐1,3,5‐tri‐O‐benzoyl‐α‐D‐arabinofuranose 2 was prepared by the reaction of the respective triflate 1 with tetrabutylammonium[18F]fluoride. The fluorosugar 2 was converted to its 1‐bromo‐derivative 3 and coupled with protected thymine 4 . The crude product mixture ( 5a and 5b ) was hydrolyzed in base and purified by HPLC to obtain the radiolabeled FMAU 6a . The radiochemical yield of 6a was 20–30% decay corrected (d.c.) in four steps with an average of 25% in four runs. Radiochemical purity was >99% and average specific activity was 2300 mCi/μmol at the end of synthesis (EOS). The synthesis time was 3.5–4.0 h from the end of bombardment (EOB). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Syntheses of N‐3(substituted) analogues of thymidine, N‐3([18F]fluorobutyl)thymidine ([18F]‐FBT) and N‐3([18F]fluoropentyl)thymidine ([18F]‐FPT) are reported. 1,4‐Butane diol and 1,5 pentane diol were converted to their tosyl derivatives 2 and 3 followed by conversion to benzoate esters 4 and 5, respectively. Protected thymidine 1 was coupled separately with 4 and 5 to produce 6 and 7 , which were hydrolyzed to 8 and 9 , then converted to their mesylates 10 and 11 , respectively. Compounds 10 and 11 were fluorinated with n‐Bu4N[18F] to produce 12 and 13 , which by acid hydrolysis yielded 14 and 15 , respectively. The crude products were purified by HPLC to obtain [18F]‐FBT and [18F]‐FPT. The radiochemical yields were 58–65% decay corrected (d.c.) for 14 and 46–57% (d.c.) for 15 with an average of 56% in three runs per compound. Radiochemical purity was >99% and specific activity was >74 GBq/µmol at the end of synthesis (EOS). The synthesis time was 65–75 min from the end of bombardment (EOB). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Radiosynthesis of a novel substrate for histone deacetylase (HDAC), 6‐([18F]fluoroacetamido)‐1‐hexanoicanilide ([18F]FAHA, [18F]‐ 3 ) is reported. For precursor synthesis, compound 1 (6‐amino‐1‐hexanoicanilide) was prepared by the reaction of 6‐amino hexanoic acid with thionyl chloride in dichloroethane followed by addition of aniline. Compound 1 was reacted with bromoacetic anhydride in tetrahydrofuran (THF) in the presence of triethylamine to produce the precursor compound 6‐(bromoacetamido)‐1‐hexanoicanilide 2 . Fluorination reactions were performed using tetrabutylammonium fluoride in various solvents at 80°C to prepare the unlabeled reference compound 3 . Radiofluorinations were performed using either n‐Bu4N18F or K18F/kryptofix, and the crude product was purified by high performance liquid chromatography (HPLC). The radiochemical yields were 9–13% decay corrected (d.c.) with an average of 11% using K18F/kryptofix, and specific activity >2 GBq/µmol at the end of synthesis. The synthesis time was 67–75 min from the end of bombardment (EOB). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Radiosyntheses of two N3‐substituted thymidine analogues, N3‐[(4[18F]fluoromethyl‐phenyl)butyl]thymidine ([18F]‐FMPBT) and N3‐[(4[18F]fluoromethyl‐phenyl)pentyl]thymidine ([18F]‐FMPPT), are reported. The precursor compounds 9 and 10 were synthesized in six steps and the standard compounds 13 and 14 were synthesized from these precursors. For radiosynthesis, compounds 9 and 10 were fluorinated with n‐Bu4N[18F] to produce [18F]‐ 11 and [18F]‐ 12 , which by acid hydrolysis yielded [18F]‐ 13 and [18F]‐ 14 , respectively. The crude products were purified by high‐performance liquid chromatography to obtain [18F]‐FMPBT and [18F]‐FMPPT. The average decay‐corrected radiochemical yield for [18F]‐ 13 was 15% in five runs, and that for [18F]‐ 14 was 10% in four runs. The radiochemical purity was >99% and the specific activity was >74 GBq/µmol at the end of synthesis. The synthesis time was 80–90 min from the end of bombardment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
A one‐pot radiosynthesis method to prepare the new fluorine‐18‐labelled fluoropyridine derivatives 5‐[18F]fluoro‐2‐pyridinamine and 6‐[18F]fluoro‐2‐pyridinamine in two to three reaction steps was developed. The first step consisted of no‐carrier‐added nucleophilic aromatic substitution of commercially available halogen‐substituted 2‐pyridinecarboxamide or 2‐pyridinecarbonitrile derivatives with K[18F]F‐K222 in DMSO at 150–180°C. The [18F]fluoride incorporation yields ranged from 67 to 98% for all studied precursor molecules. It is remarkable that 5‐bromo‐2‐pyridinecarbonitrile gave almost quantitative [18F]fluoride incorporation at the meta‐position (5‐position) of the pyridine ring after only 5 min of heating at 150°C. After base‐catalysed hydrolysis of the [18F]fluorinated pyridinecarbonitriles into their corresponding carboxamides, the latter were transformed in a Hofmann‐type rearrangement reaction into the respective amines by treatment of crude reaction mixtures with bromine and aqueous base (20–30% conversion yield). Reaction mixtures were purified by reversed‐phase semipreparative HPLC followed by strong cation exchange solid‐phase extraction to afford 5‐[18F]fluoro‐2‐pyridinamine and 6‐[18F]fluoro‐2‐pyridinamine in non‐decay‐corrected radiochemical yields of 6–10% in a total synthesis time of 83–112 min. The preparation of 5‐[18F]fluoro‐2‐pyridinamine is one of very few examples demonstrating the feasibility of nucleophilic meta‐[18F]fluorination of a pyridine derivative. Both 5‐[18F]fluoro‐2‐pyridinamine and 6‐[18F]fluoro‐2‐pyridinamine are new potentially useful radiolabelled synthons for radiopharmaceutical chemistry. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
The one step radiosynthesis of 2‐amino‐6‐ [18F]fluoro‐9‐(4‐hydroxy‐3‐hydroxymethylbutyl) purine (6‐[18F]fluoropenciclovir) 6 is reported. Radiolabeled product 6‐[18F]fluoropenciclovir 6 was prepared by radiofluorination of compound 4 with [18F]KF and isolated by a silica Sep‐Pak cartridge. The radiochemical yield of compound 6 was 45–55% decay corrected (d.c.) in six runs with radiochemical purity >98% and the radiosynthesis time was 35–42 min from end of bombardment (EOB). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
2′‐Deoxy‐2′‐[18F]fluoro‐5‐substituted‐1‐β‐D ‐arabinofuranosyluracils, including 2′‐deoxy‐2′‐[18F]fluoro‐5‐methyl‐1‐β‐D ‐arabinofuranosyluracil [18F]FMAU and [18F]FEAU are established radiolabeled probes to monitor cellular proliferation and herpes simplex virus type 1 thymidine kinase (HSV1‐tk) reporter gene expression with positron emission tomography. For clinical applications, a fully automated CGMP‐compliant radiosynthesis is necessary for production of these probes. However, due to multiple steps in the synthesis, no such automated synthetic protocols have been developed. We report here a fully automated synthesis of [18F]‐FEAU and [18F]‐FMAU on a prototype dual reactor module TRACERlab FX FN. The synthesis was performed by using a computer‐programmed standard operating procedure, and the product was purified on a semipreparative high‐performance liquid chromatography (HPLC) integrated with the synthesis module using 12% EtOH in 50 mM Na2HPO4. Finally, the percentage of alcohol was adjusted to 7% by adding Na2HPO4 and filtered through a Millipore filter to make dose for human. The radiochemical yield on the fluorination was 40±10% (n=10), and the overall yields were 4±1% (d. c.), from the end of the bombardment; [18F]FEAU (n=7) and [18F]FMAU (n=3). The radiochemical purity was >99%, specific activity was 1200–1300 mCi/µmol. The synthesis time was 2.5 h. This automated synthesis should be suitable for production of [18F]FIAU, [18F]FFAU, [18F]FCAU, [18F]FBAU and other 5‐substitued thymidine analogues. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
F‐18‐labeled porphyrins, the potential tracing and detecting agents for tumor have been synthesized and characterized by two convenient routes: one is a mixed aldehyde condensation, which involves acid‐catalyzed condensation of pyrrole, m‐anisaldehyde and 4‐[18F]fluorobenzaldehyde. The other is the acid‐catalyzed condensation of tetrapyrrane with 4‐[18F]fluorobenzaldehyde. The synthetic methodologies including solvents, reaction concentrations and catalysts are optimized for radiolabeled porphyrins. The methods also provide the desired product in reasonable radiochemical yield (20–26%) compared with those of cold chemical synthesis (1–3%) and with high radiochemical purity (>95%). The methods described here would be effective and convenient ways to produce radiolabeled porphyrin. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
2‐(4‐Methylaminostyryl)‐6‐(2‐[18F]fluoroethoxy)benzoxazole ([18F]BF‐168) was prepared and found to be a potential probe for imaging amyloid‐β. The precursor, a 6‐(2‐tosyloxyethoxy)benzoxazole derivative, was fluorinated with [18F]KF and Kryptofix 222 in acetonitrile, and the crude product purified by semi‐preparative HPLC to give [18F]BF‐168. The radiochemical purity was >95% and the maximum specific activity was 106 TBq/mmol at the end of synthesis. The synthesis time was 110 min from the end of bombardment. 2‐(4‐[N‐methyl‐11C]methylaminostyryl)‐5‐fluorobenzoxazole ([11C]BF‐145) was also prepared from 2‐(4‐aminostyryl)‐5‐fluorobenzoxazole, [11C]MeI and 5 N NaOH in DMSO, and purified by semi‐preparative HPLC. The radiochemical purity was >95% and the specific activity was 40–70 TBq/mmol at the end of synthesis. The synthesis time was 45 min from the end of bombardment. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Radiolabelled peptides are vital tools used in positron emission tomography imaging for the diagnosis of disease, drug discovery, and biomedical research. Peptides are typically labeled through conjugation to a radiolabelled prosthetic group, which usually necessitates complex, multi‐step procedures, especially for fluorine‐18 labeled peptides. Herein, we describe the automated synthesis and formulation of 2‐[18F]fluoropropionate labeled RGD‐peptides through use of the iPHASE Flexlab as an effective dual‐stage radiochemical synthesis module. The fully automated preparation of the monomeric RGD‐peptides, [18F]FP‐GalactoRGD and [18F]FP‐c(RGDy(SO3)K), was accomplished in under 90 minutes with n.d.c. radiochemical yields ca. 7% from fluoride. Similarly, the automated preparation of the dimeric RGD‐peptides, [18F]F‐PRGD2 and [18F]FP‐E(RGDy(SO3)K)2, was accomplished in under 105 minutes with n.d.c. yields ca. 4% from fluoride.  相似文献   

13.
Following our recently published fluorine‐18 labeling method, “Radio‐fluorination on the Sep‐Pak”, we have successfully synthesized 6‐[18F]fluoronicotinaldehyde by passing a solution (1:4 acetonitrile: t‐butanol) of its quaternary ammonium salt precursor, 6‐(N,N,N‐trimethylamino)nicotinaldehyde trifluoromethanesulfonate ( 2 ), through a fluorine‐18 containing anion exchange cartridge (PS‐HCO3). Over 80% radiochemical conversion was observed using 10 mg of precursor within 1 minute. The [18F]fluoronicotinaldehyde ([18F] 5 ) was then conjugated with 1‐(6‐(aminooxy)hexyl)‐1H‐pyrrole‐2,5‐dione to prepare the fluorine‐18 labeled maleimide functionalized prosthetic group, 6‐[18F]fluoronicotinaldehyde O‐(6‐(2,5‐dioxo‐2,5‐dihydro‐1H‐pyrrol‐1‐yl)hexyl) oxime, 6‐[18F]FPyMHO ([18F] 6 ). The current Sep‐Pak method not only improves the overall radiochemical yield (50 ± 9%, decay‐corrected, n = 9) but also significantly reduces the synthesis time (from 60‐90 minutes to 30 minutes) when compared with literature methods for the synthesis of similar prosthetic groups.  相似文献   

14.
2‐[(4‐[18F]Fluorobenzoyloxy)methyl]‐1,4‐naphthalenedione ([18F]7 ) and 4‐[18F]fluorobenzoic acid ([18F]8 . This coupling reaction was fast and gave quantitative yields. Further investigations are warranted on the use of DCC as a coupling agent in Positron Emission Tomography. The synthesis including HPLC purification and reformulation has been fully automated on a modified FDG synthesiser with two reactor vials. [18F]1 was found to be stable in plasma and saline, but underwent rapid metabolism in a phase 1 metabolite assay using rat S9 liver fractions. An in vivo evaluation of [18F]相似文献   

15.
This study reports the synthesis and characterization of 4‐chloro‐2‐tert‐butyl‐5‐[2‐[[1‐[2‐[18F]fluroethyl]‐1H‐1,2,3‐triazol‐4‐yl]methyl]phenylmethoxy]‐3(2H)‐pyridazinone ([18F]Fmp2) for myocardial perfusion imaging (MPI). The tosylate precursor and non‐radioactive compound [19F]Fmp2 were synthesized and characterized by infrared, 1H‐NMR, 13C‐NMR, and mass spectra (MS). The radiotracer [18F]Fmp2 was obtained by one‐step nucleophilic substitution of tosyl with 18F, and evaluated as an MPI agent in vitro and in vivo. Starting from [18F]KF/K222 solution, the typical decay‐corrected radiochemical yield (RCY) was 38 ± 8.8% with high radiochemical purity (>98%). The specific activity was calculated as 10 GBq/µmol at the end of synthesis determined by HPLC analysis. In the mice biodistribution, [18F]Fmp2 showed very high initial heart uptake (53.35 ± 5.47 %ID/g at 2 min after injection) and remarkable retention. The heart/liver, heart/lung, and heart/blood ratios were 7.98, 8.20, and 53.13, respectively at 2 min post‐injection. In the Positron Emission Tomography (PET) imaging study of Chinese mini‐swine, the standardized uptake value of the liver decreased modestly during the 2 h post‐injection, while the heart uptake and heart/liver ratios continued to increase with time. [18F]Fmp2 exhibited good stability, high heart uptake and low lung uptake in mice and Chinese mini‐swine. It may be worthy of further modification to improve liver clearance for MPI in the future.  相似文献   

16.
The tubulin polymerization is an attractive target for anticancer therapy and in the development of cancer imaging agents for use in biomedical imaging technique positron emission tomography (PET). 7‐Aroyl‐aminoindoline‐1‐sulfonamides are a novel class of potent antitublin agents. Carbon‐11‐labeled 7‐aroyl‐aminoindoline‐1‐sulfonamides have been synthesized as new potential PET agents for imaging of tubulin polymerization in cancers. The target tracers were prepared by O‐[11C]methylation of their corresponding precursors using [11C]CH3OTf and isolated by a simplified solid‐phase extraction purification procedure in 40–55% radiochemical yields based on [11C]CO2 and decay corrected to the end of bombardment (EOB), 15–20 min overall synthesis time from EOB, >98% radiochemical purity, and 74–111 GBq/µmol specific activity at the end of synthesis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Spiegelmers are high‐affinity l‐enantiomeric oligonucleotide ligands (aptamers) that display high resistance to enzymatic degradation compared to d‐oligonucleotides. Spiegelmers belong to the third generation of aptamers, and are currently extensively investigated as potential therapeutic agents. We have previously developed an original method to label natural oligonucleotides with radiohalogens and particularly with fluorine‐18, the most widely used positron‐emitter, t1/2: 109.8 min. Using the same strategy, we herein report the labelling of Spiegelmers, both with fluorine‐18 for positron emission tomography imaging and iodine‐125 for high resolution autoradiography. Three 25‐mer l‐oligonucleotides have been used, differing (a) by the position of the terminal phosphorothioate monoester group (3′‐ or 5′‐end, and therefore differing by the position of the labelling on the macromolecule) and (b) by the nature of the backbone sugar moiety (2′‐OH or 2′‐H, therefore covering the RNA and DNA series, respectively). N‐(4‐[18F]fluorobenzyl)‐2‐bromoacetamide was synthesized in three radiochemical steps from 4‐cyano‐N,N,N‐trimethylanilinium trifluoromethanesulfonate and HPLC‐purified in 90 min (typical production: 2.2–2.4 GBq starting from a batch of 22–24 GBq of [18F]fluoride). N‐(4‐[125I]iodobenzyl)‐2‐bromoacetamide was synthesized from the corresponding trimethylsilyl derivative (one pot, two radiochemical steps) and HPLC‐purified in 60 min (typical production: 24 MBq starting from 37 MBq of Na[125I]I). Coupling of the Spiegelmers with the appropriate HPLC‐purified [radiolabelled]‐halobenzyl‐2‐bromoacetamide (MeOH/PBS (0.1 M, pH 8), 10 min, 120°C) gave the corresponding labelled conjugated Spiegelmers after RP‐HPLC purification. For fluorine‐18, the whole synthetic procedure yields up to 1.1 GBq of pure labelled Spiegelmers in 160 min with a specific radioactivity of 37–74 GBq/μmol at the end of synthesis starting from 22–24 GBq of [18F]fluoride. For iodine‐125, the whole synthetic procedure allows producing up to 7.4 MBq of pure labelled Spiegelmers in 100 min with a specific radioactivity of 11–37 GBq/μmol starting from 37 MBq of Na[125I]I. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
[18F]Fluorothymidine ([18F]FLT) is synthesized with a high radiochemical yield by nucleophilic substitution in protic solvent. In this study, we compared [18F]fluorination yields of [18F]fluorothymidine ([18F]FLT) in various alcohol solvents: 3,3‐dimethyl‐1‐butanol, 2‐trifluoromethyl‐2‐propanol, t‐BuOH (2‐methyl‐2‐propanol), t‐amyl alcohol (2‐methyl‐2‐butanol), thexyl alcohol (2,3‐dimethyl‐2‐butanol) and 3,3‐dimethyl‐2‐butanol. We used 5′‐O‐DMTr‐2′‐deoxy‐3′‐O‐nosyl‐β‐D‐threopentofuranosyl)‐3‐N‐BOC‐thymine as a precursor for [18F]fluorination. [18F]F? was eluted with TBAHCO3 solution after trapping [18F]F? on a PS‐HCO3 cartridge. [18F]fluorination was performed at 100°C for 5–30 min using 20 mg of the precursor. [18F]fluorination and radiochemical yields of [18F]FLT were evaluated by radioTLC. [18F]fluorination yields were dependent on the solvent used. All tertiary alcohol solvents, except 2‐trifluoromethyl‐2‐propanol, showed >85% of [18F]fluorination yields, whereas primary and secondary alcohols showed 26.3–71.8%. The highest yield of 94.1±4.4% was obtained with thexyl alcohol after [18F]fluorination for 5 min. Automated synthesis with t‐amyl alcohol resulted in high synthetic yields of 64.6±6.1% after high‐performance liquid chromatography purification (n=43). The use of tertiary alcohol as a solvent provides high radiochemical yields of [18F]FLT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
A fluorine‐18 labeled analog of the widely used chemotherapeutic agent cyclophosphamide was synthesized as a tracer for prognostic imaging with positron emission tomography. 2‐[(2‐Chloro‐2′‐[18F]fluoroethyl)amino]‐2H‐1,3,2‐oxazaphosphorinane‐2‐oxide (18F‐fluorocyclophosphamide), was prepared by direct halogen exchange reaction from the parent cyclophosphamide. In small‐scale syntheses, radiochemical yields of up to 4.9% and specific activities of 960 Ci/mmol were achieved in a total synthesis time of 60–75 min. The [18F]‐labeled cyclophosphamide analog with radioactive purity >99% and chemical purity >96% was suitable for in vivo (microPET imaging) and ex vivo studies of a murine model of human breast tumors. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
We have developed an efficient synthesis method for the rapid and high‐yield automated synthesis of 4‐(2′‐methoxyphenyl)‐1‐[2′‐(N‐2″‐pyridinyl)‐p‐[18F]fluorobenzamido]ethylpiperazine (p‐[18F]MPPF). No‐carrier‐added [18F]F? was trapped on a small QMA cartridge and eluted with 70% MeCN(aq) (0.4 mL) containing Kryptofix 222 (2.3 mg) and K2CO3 (0.7 mg). The nucleophilic [18F]fluorination was performed with 3 mg of the nitro‐precursor in DMSO (0.4 mL) at 190 °C for 20 min, followed by the preparative HPLC purification (column: COSMOSIL Cholester, Nacalai Tesque, Kyoto, Japan; mobile phase: MeCN/25 mm AcONH4/AcOH = 200/300/0.15; flow rate: 6.0 mL/min) to afford p‐[18F]MPPF (retention time = 9.5 min). p‐[18F]MPPF was obtained automatically with a radiochemical yield of 38.6 ± 5.0% (decay corrected, n = 5), a specific activity of 214.3 ± 21.1 GBq/µmol, and a radiochemical purity of >99% within a total synthesis time of about 55 min. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号