首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied illegitimate recombination by transforming yeast with a single-stranded (ss) non-replicative plasmid. Plasmid pCW12, containing the ARG4 gene, was used for transformation of yeast strains deleted for the ARG4, either in native (circular) form or after linearization within the vector sequence by the restriction enzyme ScaI. Both circular and linearized ss plasmids were shown to be much more efficient in illegitimate integration than their double-stranded (ds) counterparts and more than two-thirds of the transformants analysed contained multiple tandem integrations of the plasmid. Pulsed-field gel electrophoresis of genomic DNA revealed significant changes in the karyotype of some transformants. Plasmid DNA was frequently detected on more than one chromosome and on mitotically unstable, autonomously replicating elements. Our results show that the introduction of nonhomologous ss DNA into yeast cells can lead to different types of alterations in the yeast genome.  相似文献   

2.
Gene replacement using linear double-stranded DNA fragments in wild-type Escherichia coli transformation is generally inefficient due to exonucleolytic degradation of incoming DNA. Recombination-proficient strains, in which the exonucleolytic activity of RecBCD is inactivated, have been used as transformation recipients to overcome this difficulty. Here we report that gene replacements using linear double-stranded donor DNA can be achieved in wild-type E.coli if electrocompetent cells are used. Using a plasmid target, we obtained 10(2)-10(3) gene replacement events/microgram linear DNA. Using an independent chromosomal target, approximately 60 gene replacement events/microgram linear DNA were obtained. The presence of Chi sites on the linear DNA, which are known to block DNA degradation and stimulate recombination in E.coli, had no effect on gene replacement efficiency in either case. RecBCD-mediated exonucleolytic activity was found to be diminished in electroporated cells. Electrotransformation thus provides a simple way to perform gene replacements in many E.coli strains.  相似文献   

3.
The plasmid DNA of 30 Escherichia coli isolates from chickens was extracted and examined using techniques designed to isolate large plasmids. This plasmid DNA was examined for the presence of certain known virulence-related genes including cvaC, traT, and some aerobactin-related sequences. Seventeen of the 30 isolates contained from one to four plasmids greater than 50 kb in size. Eleven of these 17 strains possessed plasmids greater than 100 kb in size. Therefore, E. coli isolates of chickens frequently contain large plasmids, and many of these plasmids are likely to contain virulence-related sequences.  相似文献   

4.
A pTSK series of recombinant plasmids were constructed by cloning DNA fragments of pXZ10145 or its deleted deriviate pATN65 into plasmid vector pACYC177 of E. coli. Experiment results of Coryneform bacteria transformation with these pTSK plasmids allowed us to localize the essential region for self-replication on plasmid pXZ10145. The minimal replication region of the pXZ10145 was located on a 1.2kb Nael-Nrul DNA fragment in which only one open reading frame was found. This ORF was believed to be encoded a trans-acting replication factor. The replication origin (oriV) was locate on a 0.3kb NaeI-SalI fragment which was within the ORF region.  相似文献   

5.
We developed an efficient electrotransformation system for the pathogenic fungus Histoplasma capsulatum and used it to examine the effects of features of the transforming DNA on transformation efficiency and fate of the transforming DNA and to demonstrate fungal expression of two recombinant Escherichia coli genes, hph and lacZ. Linearized DNA and plasmids containing Histoplasma telomeric sequences showed the greatest transformation efficiencies, while the plasmid vector had no significant effect, nor did the derivation of the selectable URA5 marker (native Histoplasma gene or a heterologous Podospora anserina gene). Electrotransformation resulted in more frequent multimerization, other modification, or possibly chromosomal integration of transforming telomeric plasmids when saturating amounts of DNA were used, but this effect was not observed with smaller amounts of transforming DNA. We developed another selection system using a hygromycin B resistance marker from plasmid pAN7-1, consisting of the E. coli hph gene flanked by Aspergillus nidulans promoter and terminator sequences. Much of the heterologous fungal sequences could be removed without compromising function in H. capsulatum, allowing construction of a substantially smaller effective marker fragment. Transformation efficiency increased when nonselective conditions were maintained for a time after electrotransformation before selection with the protein synthesis inhibitor hygromycin B was imposed. Finally, we constructed a readily detectable and quantifiable reporter gene by fusing Histoplasma URA5 with E. coli lacZ, resulting in expression of functional beta-galactosidase in H. capsulatum. Demonstration of expression of bacterial genes as effective selectable markers and reporters, together with a highly efficient electrotransformation system, provide valuable approaches for molecular genetic analysis and manipulation of H. capsulatum, which have proven useful for examination of targeted gene disruption, regulated gene expression, and potential virulence determinants in this fungus.  相似文献   

6.
A single-strand initiation (ssi) signal was detected on the Lactococcus lactis plasmid pGKV21 containing the replicon of pWV01 by its ability to complement the poor growth of an M13 phage derivative (M13 delta lac182) lacking the complementary-strand origin in Escherichia coli. This ssi signal was situated at the 229-nucleotide (nt) DdeI-DraI fragment and located within the 109 nt upstream of the nick site of the putative plus origin. SSI activity is orientation specific with respect to the direction of replication. We constructed an ssi signal-deleted plasmid and then examined the effects of the ssi signal on the conversion of the single-stranded replication intermediate to double-stranded plasmid DNA in E. coli. The plasmid lacking an ssi signal accumulated much more plasmid single-stranded DNA than the wild-type plasmid did. Moreover, deletion of this region caused a great reduction in plasmid copy number or plasmid maintenance. These results suggest that in E. coli, this ssi signal directs its lagging-strand synthesis as a minus origin of plasmid pGKV21. Primer RNA synthesis in vitro suggests that E. coli RNA polymerase directly recognizes the 229-nt ssi signal and synthesizes primer RNA dependent on the presence of E. coli single-stranded DNA binding (SSB) protein. This region contains two stem-loop structures, stem-loop I and stem-loop II. Deletion of stem-loop I portion results in loss of priming activity by E. coli RNA polymerase, suggesting that stem-loop I portion is essential for priming by E. coli RNA polymerase on the SSB-coated single-stranded DNA template.  相似文献   

7.
Of all the methods customarily used to transform E. coli we found only electroporation to be effective for transformation of the Gram-negative bacterium Vitreoscilla, yielding 5.10(5) transformants/microgram of plasmid DNA. The conditions used were close to those described for E. coli E. coli plasmids are stably maintained in Vitreoscilla. This is the first report of exogenous DNA transfer in Vitreoscilla which opens the way for the application of recombinant-DNA techniques to study this unique group of organisms.  相似文献   

8.
According to the endosymbiotic theory, mitochondrial genomes evolved from the chromosome of an alpha-proteobacterium-like ancestor and developed during evolution an extraordinary variation in size, structure and replication. We studied in vitro DNA replication of the mitochondrial circular plasmid mp1 (1309 bp) from the higher plant Chenopodium album (L.) as a model system that replicates in a manner reminiscent of bacterial rolling circle plasmids. Several mp1 subclones were tested for their ability to support DNA replication using a newly developed in vitro system. Neutral/neutral two-dimensional gel electrophoresis of the in vitro products revealed typical simple Y patterns of intermediates consistent with a rolling circle type of replication. Replication activity was very high for a BamHI-restricted total plasmid DNA clone, a 464 bp BamHI/KpnI fragment and a 363 bp BamHI/SmaI fragment. Further subcloning of a 148 bp BamHI/EcoRI fragment resulted in the strongest in vitro DNA replication activity, while a 1161 bp-template outside of this region resulted in a substantial loss of activity. Electron microscopic studies of in vitro DNA replication products from the highly active clones also revealed sigma-shaped molecules. These results support our in vivo data for the presence of a predominant replication origin between positions 628 and 776 on the plasmid map. This sequence shares homology with double-stranded rolling circle origin (dso) or transfer origin (oriT) nicking motifs from bacterial plasmids. mp1 is the first described rolling circle plasmid in eukaryotes.  相似文献   

9.
The Xer site-specific recombination system functions in Escherichia coli to ensure that circular plasmids and chromosomes are in the monomeric state prior to segregation at cell division. Two recombinases, XerC and XerD, bind cooperatively to a recombination site present in the E. coli chromosome and to sites present in natural multicopy plasmids. In addition, recombination at the natural plasmid site cer, present in ColEl, requires the function of two additional accessory proteins, ArgR and PepA. These accessory proteins, along with accessory DNA sequences present in the recombination sites of plasmids are used to ensure that recombination is exclusively intramolecular, converting circular multimers to monomers. Wild-type and mutant recombination proteins have been used to analyse the formation of recombinational synapses and the catalysis of strand exchange in vitro. These experiments demonstrate how the same two recombination proteins can act with different outcomes, depending on the organization of DNA sites at which they act. Moreover, insight into the separate roles of the two recombinases is emerging.  相似文献   

10.
A sensitive and precise in vitro technique for detecting DNA strand discontinuities produced in vivo has been developed. The procedure, a form of runoff DNA synthesis on molecules released from lysed bacterial cells, mapped precisely the position of cleavage of the plasmid pMV158 leading strand origin in Streptococcus pneumoniae and the site of strand scission, nic, at the transfer origins of F and the F-like plasmid R1 in Escherichia coli. When high frequency of recombination strains of E. coli were examined, DNA strand discontinuities at the nic positions of the chromosomally integrated fertility factors were also observed. Detection of DNA strand scission at the nic position of F DNA in the high frequency of recombination strains, as well as in the episomal factors, was dependent on sexual expression from the transmissable element, but was independent of mating. These results imply that not only the transfer origins of extrachromosomal F and F-like fertility factors, but also the origins of stably integrated copies of these plasmids, are subject to an equilibrium of cleavage and ligation in vivo in the absence of DNA transfer.  相似文献   

11.
It was demonstrated previously that replication of plasmids derived from bacteriophage lambda (so-called lambda plasmids) is inhibited in wild-type Escherichia coli cells starved for isoleucine and arginine whereas it proceeds under the same conditions in relA mutants. Since replication of other replicons during the stringent or relaxed response depends on the nature of the deprived amino acid, we investigated replication of lambda plasmids in E. coli relA+ and relA- strains starved for different amino acids. We found that replication of lambda plasmids is generally inhibited during the stringent, but not relaxed, response. Differences between cells starved for different amino acids, although reproducible, were not dramatic. Amino acid starvation was previously proposed as a method for amplification of lambda plasmid DNA in vivo. We found that during amino acid limitation lambda plasmids replicate more extensively in the relA mutants than during amino acid starvation. The efficiency of plasmid DNA amplification was found to be dependent on the kind of limited amino acid; in relA- bacteria limited for leucine we observed about 10-fold plasmid amplification. Some lambda plasmid replication was also found under these conditions in the relA+ host. The mechanism of the stringent control of lambda plasmid DNA replication has already been proposed. Here the possible mechanism of the regulation of lambda plasmid replication during amino acid limitation is presented.  相似文献   

12.
Two overlapping DNA fragments from yeast Saccharomyces cerevisiae containing the actin gene have been inserted into pBR322 and cloned in E.coli. Clones were identified by hybridization to complementary RNA from a plasmid containing a copy of Dictyostelium actin mRNA. One recombinant plasmid obtained (pYA102) contains a 3.93-kb Hindlll fragment, the other (pYA208) a 5.1-kb Pstl fragment, both share a common 2.2-kb fragment harboring part of the actin gene. Cloned yeast actin DNA was identified by R-loop formation and translation of the hybridized actin mRNA and by DNA sequence analysis. Cytoplasmic actin mRNA has been estimated to be about 1250 nucleotides long. There is only one type of the actin gene in S.cerevisiae.  相似文献   

13.
Plasmids with the aadA gene from plasmid R100, which confers resistance to the aminoglycosides spectinomycin and streptomycin in Escherchia coli, can be introduced into wild-type Myxococcus xanthus, strain DK1622, by electroporation. Recombinant M. xanthus strains with integrated plasmids carrying the aadA gene acquire resistance to high levels of these antibiotics. Selection for aadA in M. xanthus can be carried out independently of, or simultaneously with, selection for resistance to kanamycin. The kinds and frequencies of recombination events observed between integrative plasmids with aadA and the M. xanthus chromosome are similar to those observed after the transformation of yeast. Cleavage of integrative plasmid DNA at a site adjacent to a region of homology between the plasmid and the M. xanthus genome favors the targeted disruption of M. xanthus genes by allele replacement.  相似文献   

14.
We describe a yeast trihybrid system that facilitates rapid screening of cDNA libraries. Novel yeast vectors were developed that direct integration of cDNA encoding the bait and third protein component into the yeast chromosome. A recombinant yeast strain is thus generated (screening strain) and is available for library transformation. Transformation with the library DNA is a single, efficient transformation event, allowing the cDNA library to be represented in one step. Recovery of the library plasmid from the yeast is also simplified, since it is the only episomal plasmid. Assay of trihybrid interaction and identification of positive clones is facilitated by regulating expression of the third protein component using the yeast MET3 promoter, which is repressed in the presence of exogenous methionine. Trihybrid interactions are detected only on media lacking methionine. This trihybrid system uses the standard E. coli LacZ and yeast HIS3 reporter genes and is compatible with most available Gal4 activation domain cDNA libraries. We describe the successful application of this yeast trihybrid system to the study of phosphoprotein interactions involved in T-cell signaling.  相似文献   

15.
Mini-plasmids, based on the N15 temperate bacteriophage replicon, are described. One of these, N15-203 linear 13.8 kb plasmid, has anomalously high copy number--more than 250 per one bacterial chromosome and the amount of plasmid DNA comprises about half of the total DNA of a cell. This property of N15-203 plasmid is realized only in the strain lysogenic for a N15 phage and is lost for the circular deletion versions of N15-203. The efficiency of transformation of E. coli C (N15) strain is essentially the same for N15-203 and pUC4K plasmids. Insertion of foreign DNA with a size up to 20 kb into BgIII cloning site of N15-203 plasmid does not decrease significantly efficiency of transformation calculated per number of DNA molecules and the total amount of plasmid DNA in a cell. N15-203 plasmid may be used as a vector for molecular cloning of relatively large DNA fragments, and in those biotechnology processes when productivity depends on a vector's copy number.  相似文献   

16.
Both the linear plasmids, pDHL1 (8.4 kb) and pDHL2 (9.2 kb), of Debaryomyces hansenii TK require the presence of a third linear plasmid pDHL3 (15.0 kb) in the same host cell for their replication. A 3.5 kb Bam HI-PstI fragment of pDHL1 strongly hybridized by Southern analysis to the 3.5 kb NcoI-AccI fragment of pDHL2, suggesting the importance of this conserved region in the replication of the two smaller pDHL plasmids. The 4.2 kb pDHL1 fragment containing the above hybridized region was cloned and sequenced. The results showed that the cloned pDHL1 fragment encodes a protein of 1000 amino acid residues, having a strong similarity to the DNA polymerase coded for by ORF1 of the killer plasmid pGKL1 from Kluyveromyces lactis. The catalytic and proof-reading exonuclease domains as well as terminal protein motif were well conserved as in DNA polymerases of pGKL1 and other yeast linear plasmids. Analysis of the cloned fragment further showed that pDHL1 encodes a protein partly similar to the alpha subunit of the K. lactis killer toxin, although killer activity was not known in the DHL system. Analysis of the 5' non-coding region of the two above pDHL1-ORFs reveal the presence of the upstream conserved sequence similar to that found upstream of pGKL1-ORFs. The possible hairpin loop structure was also found just in front of the ATG start codon of the pDHL1-ORFs like pGKL1-ORFs. Thus the cytoplasmic pDHL plasmids were suggested to possess a gene expression system comparable to that of K. lactis plasmids.  相似文献   

17.
We isolated 11 nonconjugative plasmids mediating resistance to aminoglycoside antibiotics, including gentamicin, from Pseudomonas aeruginosa strains. Their genetic properties were investigated in both P. aeruginosa and Escherichia coli transformants. The plasmid molecular weights ranged from 11 x 10(6) to 24 x 10(6). A low level or complete absence of gentamicin resistance was observed when these plasmids were introduced into E. coli, but gentamicin resistance was restored when the plasmids were transferred back to P. aeruginosa from E. coli. Aminoglycoside-modifying enzyme activity was detected in P. aeruginosa harboring these plasmids, but was absent or greatly reduced in E. coli strains. This lack of expression may explain the observed decrease in aminoglycoside resistance.  相似文献   

18.
19.
The 2.4-kb plasmid pAP1 from Arcanobacterium (Actinomyces) pyogenes had sequence similarity within the putative replication protein and double-stranded origin with the pIJ101/pJV1 family of plasmids. pJGS84, a derivative of pAP1 containing a kanamycin resistance gene, was able to replicate in Escherichia coli and Corynebacterium pseudotuberculosis, as well as in A. pyogenes. Detection of single-stranded DNA intermediates of pJGS84 replication suggested that this plasmid replicates by the rolling circle mechanism.  相似文献   

20.
Escherichia coli DNA gyrase B subunit (GyrB) is composed of a 43-kDa N-terminal domain containing an ATP-binding site and a 47-kDa C-terminal domain involved in the interaction with the gyrase A subunit (GyrA). Site-directed mutagenesis was used to substitute, in both the entire GyrB subunit and its 43-kDa N-terminal fragment, the amino acid Y5 by either a serine (Y5S) or a phenylalanine residue (Y5F). Under standard conditions, cells bearing Y5S or Y5F mutant GyrB expression plasmids produced significantly less recombinant proteins than cells transformed with the wild-type plasmid. This dramatic decrease in expression of mutant GyrB proteins was not observed when the corresponding N-terminal 43 kDa mutant plasmids were used. Examination of the plasmid content of the transformed cells after induction showed that the Y5F and Y5S GyrB protein level was correlated with the plasmid copy number. By repressing tightly the promoter activity encoded by these expression vectors during cell growth, it was possible to restore the normal level of the mutant GyrB encoding plasmids in the transformed bacteria. Treatment with chloramphenicol before protein induction enabled large overexpression of the GyrB mutant Y5F and Y5S proteins. In addition, the decrease in plasmid copy number was also observed when the 47-kDa C-terminal fragment of the GyrB subunit was expressed in bacteria grown under standard culture conditions. Analysis of DNA supercoiling and relaxation activities in the presence of GyrA demonstrated that purified Y5-mutant GyrB proteins were deficient for ATP-dependent gyrase activities. Taken together, these results show that Y5F and Y5S mutant GyrB proteins, but not the corresponding 43-kDa N-terminal fragments, compete in vivo with the bacterial endogenous GyrB subunit of DNA gyrase, thereby reducing the plasmid copy number in the transformed bacteria by probably acting on the level of negative DNA supercoiling in vivo. This competition could be mediated by the presence of the intact 47-kDa C-terminal domain in the Y5F and Y5S mutant GyrB subunits. This study demonstrates also that the amino acid Y5 is a crucial residue for the expression of the gyrase B activity in vivo. Thus, our in vivo approach may also be useful for detecting other important amino acids for DNA gyrase activity, as mutations affecting the ATPase activity or GyrB/GyrB, or GyrB/GyrA protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号