首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
针对传统反射镜无法消除加工及装配应力,长期使用后面形精度下降不能满足使用要求的问题,提出了一种高稳定性空间反射镜支撑结构的解决方案,进行了具有大容差特性的1.5m口径高精度空间反射镜工程化研究和创制。依据经验和理论,完成了初始反射镜组件构型,反射镜的材料选用RB-SiC,采用三角形背部半开口反射镜轻量化形式和背部三点膜片型柔性支撑结构。以装配误差0.01mm的9种工况下反射镜的面形RMS变化量最小为目标,利用isight软件对反射镜支撑结构的主要尺寸进行了优化设计。最终完成了轻量化率为82.1%,组件质量为170.23kg的反射镜的研制。试验结果表明:反射镜在1 g重力作用下,面形精度RMS优于0.016λ(λ=632.8nm);加入0.02mm强迫位移模拟装配误差,面形RMS仍然为0.016λ;在20℃±5℃温变环境下,面形RMS变化量在0.002λ范围内;组件一阶固有频率为101.3Hz。反射镜组件静态刚度、动态刚度、面形精度以及环境适应性满足空间工程应用要求。  相似文献   

2.
针对大口径离轴长条形反射镜光轴水平向检测的需要,设计了一套检测支撑结构。优化了结构参数,实现了由支撑结构引起的镜面面形误差最小化。通过比较长条形反射镜光轴水平向检测支撑的级联多点支撑结构,选择了结构简单、扩展性和调整性优良的两点单层固定支撑结构。利用集成仿真与优化方法,分析计算反射镜镜面面形误差随支撑间隔的变化趋势,确定了最优支撑间隔。最后,利用干涉仪结合补偿器的检测方式,对不同支撑间隔工况下镜面面形进行检测,验证了仿真分析的可靠性。结果表明:在支撑间隔为564mm时,由检测支撑引起的镜面面形误差最小(RMS=8.26nm),干涉检测得到的镜面面形误差随支撑间隔的变化趋势与仿真得到的趋势相符,仿真结果可靠性高。提出的方法可实施性好,可推广到其他大口径离轴长条形反射镜的设计和检测中,为离轴三反(TMA)相机的设计提供技术基础。  相似文献   

3.
针对空间光学遥感器圆形反射镜在安装过程中会由于采用间隙配合胶接方法在温度变化时产生非对称应力从而引起非对称像差(主要表现为像散),以及使用的胶层为非线性材料使反射镜面形变化不可逆从而降低结构可靠性等问题,提出了基于过盈配合的无隙支撑方法。该方法依据最小势能原理,使用柔性块以过盈配合的方式固定反射镜。采取线性搜索方法分析得到了适当的过盈量(0.03 mm),利用有限元方法模拟实际工况,得到镜面面形变化情况。对反射镜组件进行温度循环试验,并利用干涉仪对反射镜进行检测。试验显示,温度变化±4℃时,镜面面形RMS值最大为0.018λ,符合设计要求(RMS值≤0.02λ),干涉图表明反射镜受力均匀、无像散;在温度循环试验中,反射镜面形变化可逆。这些结果表明,对于圆反射镜,采用无隙支撑方法能够很好地解决温度变化对镜面面形的不利影响。  相似文献   

4.
为了分析径向温度梯度对轻量化反射镜面形精度的影响,以某空间相机2m口径轻量化反射镜为研究对象,建立了反射镜有限元模型,分析了不同分布形式的径向温度梯度对轻量化反射镜面形RMS的影响程度,通过试验验证了仿真方法及结论的准确性,研究了不同轻量化结构与径向温度梯度对反射镜面形精度的耦合影响。结果表明:不同分布模式的径向温度梯度引起的面形RMS值最大可相差294倍,且径向梯度引起的面形误差无法通过优化反射镜支撑方案的方式使其减小。不同轻量化结构的反射镜面形精度对不同分布模式的径向温度梯度敏感度不同,三叶式削边和对称式削边的轻量化方式在特定径向温度场分布模式下,会对反射镜热稳定性产生极不利影响。  相似文献   

5.
研究了用厚胶层进行光学零件之间的黏结操作时,胶层固化后其收缩力对反射镜面形的影响。首先,分析了胶层固化过程中胶层对光学元件产生拉应力的原理,找到了胶层固化过程中产生收缩力的主要因素。其次,建立了反射镜胶结组件的有限元模型,采用等效热变形法仿真分析了胶层收缩对反射镜面形的影响,分析发现胶层的等效线胀系数不能直接采用收缩率代替,而将材料的收缩率转换为胶层的等效线胀系数后,分析结果与试验结果吻合较好。最后,提出了减小胶层收缩对反射镜面形影响的改进方案。试验结果表明:黏胶方案改进后,胶层固化过程中的收缩力引起反射镜中心区域鼓包的PV值从0.574λ减小为0.064λ,镜面面形均方根值从0.127λ减小为0.038λ,这些结果显示胶层固化过程中产生的收缩力对反射镜面形的影响得到了显著改善。  相似文献   

6.
30m望远镜三镜镜面面形误差的斜率均方根评价   总被引:1,自引:1,他引:0  
由于传统的均方根方法在评价大口径反射镜时难以精确表达光学表面的中空间频率误差,本文提出了基于斜率均方根(SlopeRms)的误差评价方法来评价光学表面面形。该方法先以Zernike多项式拟合光学表面面形,在此基础上求解不同空间间隔上的斜率均方根。这种评价方法可以很好地区分小尺寸磨削工具造成的误差和大口径反射镜在多点支撑下造成的面形误差。文中建立了SlopeRms的数学模型,推导了SlopeRms的计算方法,并以此方法为基础对30m望远镜(TMT)三镜面形进行了评价。结果显示,采用斜率均方根的评价方法得到的光学表面面形值达到0.9μrad,优于传统的RMS评价方法(RMS=115nm),满足设计要求。结果显示,基于斜率均方根的误差评价方法能更加全面和客观地评价大口径反射镜面形,具有实际意义。  相似文献   

7.
空间光学遥感器反射镜柔性支撑的设计   总被引:13,自引:1,他引:12  
为降低光学遥感器反射镜在复杂且恶劣的空间环境下的面形误差,设计了一种柔性支撑结构,使反射镜在具有良好的热尺寸稳定性的同时结构刚度满足力学要求。针对某长圆形光学反射镜组件,通过设置柔性铰链的厚度、最薄处厚度和柔性铰链圆弧半径3个特征参数,对柔性铰链进行合理的结构设计。采用有限元法对反射镜组件在力热耦合状态下的面形精度和结构强度及结构的动态刚度进行仿真分析,结果表明,反射镜面形PV值由350.08nm降至59.03nm,RMS值由102.67nm降至9.11nm,柔性结构保证了反射镜的热尺寸稳定性,同时满足力学要求。最后,对反射镜组件的力热模拟件进行力学试验,得到的结果显示其3个方向的基频分别达到264Hz,290Hz和320Hz。这些结果表明,该柔性支撑结构设计方案是合理可行的。  相似文献   

8.
展开式反射镜单元镜支撑技术   总被引:5,自引:4,他引:1  
基于展开镜结构工作原理,运用有限元方法分析了展开式反射镜单元的裸镜及其支撑方案.目的是确定镜子支撑点数量及排布方式,并具体分析了12-6-1、12-8-1和16-8-1型三种支撑点排布方式,分别计算了各支撑点排布方式下的镜面自重变形.计算结果表明,采用16-8-1型的排布方式较为合理.支撑结构的优化设计是在裸镜支撑点优化位置加入支撑组件综合分析镜坯与支撑组件,以镜面面形误差及结构总体刚度为目标函数,考查、修改支撑组件以保证镜面RMS值在可调节范围(30μm)内.计算带有支撑组件的单元反射镜在自重作用下的变形,得出的镜面RMS值为16.52nm,小于1/4波长(632.8nm),表明将该支撑方案应用于单元镜具有可行性.并提高整个反射镜面的面形质量.  相似文献   

9.
研制了一套用于4m SiC反射镜原位检测的静压支撑系统,以降低超大口径SiC反射镜离线检测的风险,提高其制造效率。首先,推导了单元刚度的解析式,确定了其中关键因素;然后,对支撑单元进行抽样测试,结合解析式预测了支撑群组中单元的工作刚度。最后,通过密封性测试和反射镜原位检测,验证了支撑系统的稳定性;通过有限元模拟,计算了系统的重力卸载面形精度。结果表明:5个单元连组时,单元刚度约为1.9kN/mm,刚度值分布在±3%误差区间;独立单元刚度可高至15kN/mm;3种分组单元刚度预测值分别为1.7,1.1和0.8kN/mm。支撑系统空载时管路压强变化缓慢,表明密封性良好;用该系统支撑4m反射镜时,11天内高度绝对变化量小于50μm,相对变化量小于20μm。54个单元刚度随机分布时,镜面面形高阶残差(RMS)为20nm。提出的系统基本满足原位检测的稳定性和精度要求。  相似文献   

10.
为减轻空间光学载荷的体积与重量,并保证系统具有良好的温度适应性与动态刚度,设计了一种Φ400mm口径全SiC材料的悬臂轻巧型同轴光机系统。利用参数优化方法,将系统基频与反射镜面形精度RMS值作为优化目标,整机重量作为约束条件,支撑结构轴向厚度等相关参数作为设计变量,获得了三点悬臂式超轻同轴光机结构。通过仿真分析、振动试验与面形测试对悬臂式超轻同轴光机结构的合理性进行了验证,结果表明,光机系统重量仅为14kg,在20±4℃温度变化范围内系统波像差均为0.05λ(λ=632.8nm),系统基频为142.35Hz,与仿真分析结果138.04Hz相比,误差为3%,可以保证整机结构的稳定性。  相似文献   

11.
采用635nm波长半导体可见光激光和10.5μm波长半导体红外激光作为干涉光源,设计了635nm和10.5μm双波段共光路透射式红外干涉仪,实现了可见光波段干涉测试与红外光波段干涉测试共光路,且双光路共用可见光对准。双波段共用机械式相移系统,并采用635nm测试光分段驻点标定10.5μm测试时相移器的长行程误差。研制的双波长红外干涉仪系统的红外测试精度达到PV优于0.05λ,RMS优于0.02λ,系统重复性RMS优于0.001λ。采用该干涉仪测试口径为400mm×400mm,离轴量为800mm的离轴非球面,得到边缘最大偏差值为21.9μm,能够实现大口径离轴非球面从粗磨到精磨高精度加工面形的全过程干涉测试。  相似文献   

12.
激光冲击软模大面积微弯曲成形方法   总被引:1,自引:0,他引:1  
为了实现金属箔板大面积微弯曲成形,本文结合激光冲击微弯曲成形技术与软模成形技术的优点,提出了激光冲击软模大面积微弯曲成形方法。 该方法是在脉冲激光冲击波压力下,将软模作为柔性冲头作用于金属箔板来实现工件成形的。实验中使用了Innolas Gmbit公司生产的Spitlight 2000 THG脉冲激光器,将250 μm厚的聚氨酯橡胶薄膜作为软模,采用德国LPKF-ProtoMat-C60型雕刻机在印刷电路板上加工出深度为120 μm的U型多槽模具,实现了在厚度为30 μm的铜箔板上一次性对3个U型凹槽冲击成形。用KEYENCE VHX-1000C超景深三维显微系统进行工件观测,结果显示工件上的微成形槽具有良好的轮廓质量。以ANSYS/LS-DYNA为平台,使用有限元建模(FEM)方法对微弯曲过程进行了数值模拟。实验和模拟结果均表明,加载软模的工件与模具的U型凹槽特征在形状上更加接近,成形工件更加均匀,而且具有较好的表面质量,其最大平均成形深度可达110 μm,大于激光直接冲击成形的最大深度(88 μm),说明使用软模提高了充型能力。  相似文献   

13.
为了提高自适应光学系统科研人员的工作效率,满足自适应光学系统向高低阶多波前校正器的发展需求,本文研究了一套自适应光学系统控制软件设计方法,以适应实验设备的不断更新换代,避免实验过程中软件不断更新修改所带来的问题。本文首先从功能和性能两方面分析了实验对软件系统的需求,提出基础层、功能层及表示层3层的软件架构体系,采用共享内存和临界区对象相结合的软件开发方法,确保自适应光学系统的实时性与准确性,避免资源冲突和浪费;采用Windows API事件实现多线程之间同步协调控制。基于上述思想开发了液晶-变形镜混合的高低阶自适应光学系统控制软件,可在0.6ms内完成波前采集、波前计算、控制信号计算和各设备间的同步协调控制。最后,使用该软件进行自适应光学校正:仅变形镜和倾斜镜校正后峰峰值由3.38μm降为0.95μm,均方根误差由0.66μm降为0.12μm;液晶校正器、变形镜和倾斜镜同时校正后峰峰值为0.44μm,均方根误差为0.02μm,计算总延迟为0.378ms。由实验结果可知,本文设计的软件可以实现自适应光学系统的实时校正,在保证校正精度的同时具有方便修改、功能齐全及模块化的优势,为后续自适应光学实验提供保障。  相似文献   

14.
离心熔铸技术在大口径非球面镜镜胚的制造方面具有独特优势。本文通过自行研制的缩比模型实验机进行试验,深入研究了离心熔铸工艺及成型镜胚质量,详细介绍了模具涂层的制备、离心熔铸的加热及冷却等工艺过程,制备了非球面镜镜胚模型。采用数值模拟与试验研究相结合的方法,对所得镜胚面形偏差工艺参数的敏感性进行了研究。分析了模具的热膨胀系数、镜胚冷却速率、直径及加热温度对面形偏差的影响,得到了偏差工艺参数的敏感性规律。通过对面形偏差进行两次迭代补偿,面形偏差值从-84μm降到33μm,补偿后的结果满足设计要求。采用离心熔铸技术,可以制备满足上表面垂直偏差在30~40μm范围内的非球面镜镜胚。  相似文献   

15.
设计了一种用于大型光学载荷次镜在轨位姿精密调整的Hexapod型平台机构,并对其进行构型参数优化以及各支撑杆和上下铰点误差限的最优分配。建立了Hexapod平台机构运动学模型和静柔度模型,分析了主要结构参数对机构性能的影响。按照次镜精调机构性能要求,提出了定位精度指标和抗变形指标,建立了以构型参数为变量的优化目标函数,并利用遗传算法对两个单目标函数进行优化。利用加权分配法构造统一约束目标函数,利用遗传算法对其进行多目标优化。然后,建立非线性最优误差分配模型,对各支撑杆和上下铰点进行误差分配。最后,通过对原理样机性能指标的测试验证了上述研究方法的效果。研究结果表明:优化前后动平台定位精度提高了8.3%,抗变形能力提高了62.5%,铰点误差限由2.7μm提高到6.3μm,支撑杆误差限由1.3μm提高到3.2μm。另外,实验测得Z轴相对定位精度为0.6%,静刚度达到41.14N/μm。本研究提高了次镜精调机构的定位精度和静载抗变形能力,有助于缩短设计、加工周期,节约设计、加工成本。  相似文献   

16.
左恒  刘志民 《光学精密工程》2018,26(7):1612-1620
针对大口径自适应副镜镜面变形量小、变化频率高、微变形难以精确测量的难题,设计一种基于电容检测芯片Pcap01-AD和STM32F103的镜面变形检测系统。首先,根据音圈电机驱动的变形镜的特点提出基于电容位移传感的变形镜微变形测量方案。然后,进行该测量系统的硬件和软件设计,其中硬件部分由电容检测芯片Pcap01接口电路、单片机STM31F103最小系统和供电部分构成,软件部分包括实现电容数字信号采集的C程序设计、Pcap01-AD与单片机的通讯程序和数据处理程序。最后,设计实验平台进行多次试验。试验测试结果表明,在变形镜±50μm的位移区间内,测量灵敏度为200pF/3μm,10nm的位移量对应的电容变化为0.067pF。该系统测量精度高、误差小、检测效率高,能够用于自适应镜面的变形检测,同时也适用于其他微小位移的检测。  相似文献   

17.
用纳米压印工艺制备红外金属光栅时,硬模板压印极易造成光栅结构缺陷致使光栅性能下降。本文采用柔性纳米压印工艺作为替代方法制备了适合在3-5μm波段工作,高度为100nm,上下金属层厚为40nm的双层金属纳米光栅,其光栅结构参数为:周期200nm,线宽100nm,深宽比1∶1。该方法采用热纳米压印工艺将母模板光栅结构复制到IPS(Intermediate Ploymer Sheet)材料上,制作出压印所需软模板;随后通过紫外纳米压印工艺将IPS软模板压印到STU-7压印胶,得到结构完整均匀的介质光栅;最后在介质光栅上垂直热蒸镀金属铝,完成中红外双层金属纳米光栅的制备。对所制备光栅进行了测试,结果表明,所制备光栅在2.5~5μm波段的TM偏振透射率超过70%,在2.7~5μm波段的消光比超过30dB,在2.72~3.93μm波段的消光比超过35dB,显示了优异的消光比特性和偏振特性。该研究结果在红外偏振探测、红外偏振传感等方面具有潜在应用。  相似文献   

18.
靶准直器是惯性约束核聚变靶场中的重要部件,其在靶室中的位姿是保证靶定位瞄准精度的主要因素之一。为了实现微米级的定位瞄准精度,需要利用调整机构对靶准直器位姿进行调整。本文采取理论分析、有限元仿真和实验验证相结合的方法对靶准直器悬臂Y向调整机构的受力变形和稳定性进行了研究。根据对Y向调整机构的受力变形分析,得到结构受力变形的理论关系式,可从理论上优化Y向调整机构的刚度和稳定性;基于有限元仿真对Y向调整机构进行相应约束条件下的稳定性分析和结构优化;利用实验装置对靶准直器整体稳定性进行实验测试。实验结果表明:Y向调整机构优化后,靶准直器静态Y向变形由原来的7.9μm减小至小于2μm,动态稳定性满足系统2μm/2h的稳定性要求。同时,试验、仿真和理论分析结果的变化趋势一致,验证了理论和仿真分析的正确性。  相似文献   

19.
为了解决巨型望远镜潜在的结构变形对方位轴系支撑和精密驱动的影响,基于组合轴承和驱动车载的概念,提出了一种集成具有轴承及驱动两个功能的机械装置。此套机械装置采用了静液压油垫和直接驱动技术。直接驱动和液压油垫组合安装在承载机构上,可以减小电机间隙变化以便提高驱动系统的效率,此机械装置包含一套运动副连接,该连接允许底部静液压油垫与滑动导轨紧密贴合而上部连接到方位轴移动结构上(就方位轴而言),由此机械装置在运行时只会受到底部滑动轨道平整度的影响而不受上部移动结构大尺度变形的影响。之后通过ANSYS对机械装置进行了静力学仿真,以验证模型的准确性。分析结果证明:系统在设置运动副连接和未设置运动副连接两种情况下,施加Z轴方向力矩时,关注点的位移由14.3μm减小为0.85μm;施加X轴方向力矩时,关注点的位移由12.9μm减小为1.26μm,运动副连接层可以显著吸收望远镜方位轴移动结构变形引起的力矩,从而不会将该作用力矩强加给静液压油垫和驱动系统。该项设计为巨型望远镜高精度轴系和精密驱动的研制提供了可靠的设计依据和技术支持。  相似文献   

20.
在利用单晶硅的各向异性腐蚀制作光栅的过程中,掩模与硅晶向的精密对准是获取大尺寸光栅结构的前提条件,高对准精度将显著降低光栅槽型侧壁粗糙度。设计并制作了一种扇形图案,通过以该图案为掩模的预刻蚀,可快速准确发现硅基底内晶格取向。通过此方法进行晶向标定,并利用紫外光刻与湿法刻蚀,成功研制了尺寸为15mm×15mm、高度为48.3μm、周期为5μm、高宽比为20的矩形光栅结构,线条侧壁粗糙度RMS值为0.404nm;利用全息光刻与湿法刻蚀成功研制了大高宽比深槽矩形光栅及三角形槽光栅。矩形槽光栅尺寸为50mm×60mm,高度为4.8μm,周期为333nm,高宽比为100,侧壁粗糙度RMS值为0.267nm。三角形槽光栅周期为2.5μm,侧壁粗糙度RMS值为0.406nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号