首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
李丽娟  朱振东  邵素霞  彭文 《电池》2021,51(3):229-232
研究Li(Ni0.6Co0.2Mn0.2)O2锂离子电池常温循环失效机理.对比电池循环前、中、后期的电化学阻抗谱、充放电曲线、材料结构及颗粒形貌,得出失效原因为:电荷转移阻抗增加,正极二次颗粒破碎导致内部微裂纹产生,以及过渡金属元素溶出并在负极沉积.控制正极体积的变化,减少内部微裂纹的产生,并阻止过渡金属元素的溶出与沉积,可延长电池的寿命.  相似文献   

2.
三元锂离子电池在电动汽车和电力储能领域广泛应用,其寿命与安全是行业关注热点。该文研究25A.h商用三元锂离子电池在额定电流和2倍额定电流工况下,全寿命周期内性能衰退规律,并拆解循环后电池,表征关键电池材料,分析负极界面变化,从原子层级推演三元电池性能衰退机制。结果表明,在电流过载工况下,电池循环1500周前后性能出现加速衰退,并伴随满电直流内阻升高,库伦效率降低,电池产气等现象。这可能是由于过载电流加速正极材料中Ni3+、Co3+和Mn4+离子的析出,并迁移至负极表面催化电解液溶剂分解成小分子气体引起。过渡金属离子溶出、电池内阻增大以及电池产气,3个因素耦合加强,共同导致三元锂离子电池性能“跳水”现象。  相似文献   

3.
本文研究了磷酸铁锂电池充放电循环过程中电化学阻抗变化特征,采用不同规格磷酸铁锂电池在不同放电深度(DOD)、荷电状态(SOC)、充放电倍率等条件下进行实验。实验结果发现:在一定充放电循环周期内,电池欧姆阻抗基本维持稳定,说明电池经过长期充放电循环后未出现严重劣化;电荷转移阻抗先减小后增大,表明在充放电循环初期电池被活化,但在循环后期电池性能逐渐衰退,电荷转移难度增加;固态扩散阻抗仅在充放电循环初期出现显著下降,随后保持稳定,表明初期活化过程可明显改善锂离子的固态扩散。进而得出:若电化学阻抗谱中各部分电阻值无明显增大,表明电池未出现严重的性能衰退,内部性质稳定;用电荷转移阻抗变化可对电池衰减性能进行准确评价;造成电池阻抗增大的主要原因在于正极阻抗的增加。  相似文献   

4.
孔俊丽 《电源技术》2023,(5):615-617
采用商业化LiNi0.5Co0.2Mn0.3(NCM523)正极与软碳负极组装1 A软包全电池,测试5 C循环性能。全电池在2.5~4.2 V的电压范围内5 C循环3 000次后仍然呈现出84%的容量保持率。将循环250、1 000、3 000次的全电池进行拆解,详细研究了电池衰减过程中材料的变化。X射线衍射(XRD)、扫描电子显微镜(SEM)、拉曼光谱显示循环后正负极材料没有明显的结构形貌改变,尤其是3 000次循环后正极表面仍然具有层状结构特征,但是正极的晶体结构有序性下降。结合电化学阻抗谱(EIS)分析可得,负极表面固体电解质界面膜(SEI)的持续生长是电池衰减的主要原因,正极材料结构不断被破坏是电池衰减的次要原因。  相似文献   

5.
三元层状正极材料是非常有应用前景的动力型电池正极材料,而其电化学性能还有待于进一步提高。研究了正极片厚度、隔膜类型、电解液组成和负极表面变化等因素对LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2(NCM111)材料电化学性能的影响。研究发现随着正极极片厚度的增加,电池在循环过程中容量衰减严重;相比于聚丙烯(PP)隔膜,聚酰亚胺(PI)隔膜由于具有更好的浸润性,提高了电池的放电容量;电解液中低粘度链状碳酸二乙酯(DEC)的含量对电极相容性和正极材料中过渡金属离子溶解都有较大影响;负极表面锂枝晶的形成降低了电池的循环性能。  相似文献   

6.
厚电极技术可以有效提升锂离子电池中正极及负极活性物质的占比,降低隔膜及集流体非活性物质的占比,进而有效提升锂离子电池的能量密度。但锂离子电池电极厚度的增加会导致电荷(电子及离子)传输距离及阻抗增加、负极片动力学恶化,进而严重影响锂离子电池循环寿命。通过激光蚀刻后的负极片,可以增加极片表面的孔隙,并增加石墨颗粒表面的锂离子脱嵌通道,有效改善负极片的动力学性能。与辊压后的负极片形成的锂离子电池相比,激光蚀刻负极片形成的锂离子电池在常温下的循环寿命提升了87%,在45℃下的循环寿命提升了37%。  相似文献   

7.
本项目所研制的高容量长循环18650锂离子电池,以镍钴铝作正极材料,硅碳作负极材料,主要采用在正极浆料中添加酸性添加剂、导电剂选型、负极粘结剂选型、电解液中加入联合添加剂、同时减少隔膜、集流体厚度等方法来开发高容量的锂离子电池。研究表明:本研究显著提高了正极材料的环境适应性,增强了负极的粘结能力,降低电池阻抗,使18650电池的容量提高到3100mAh;400次标准循环,容量保持率达90%以上。  相似文献   

8.
选用Li Ni1/3Co1/3Mn1/3O2材料制成了锂离子动力电池,将该单体电池进行循环寿命实验,通过对电池进行拆解分析,分别对正极极片、负极极片、隔膜等进行形貌与成分分析,研究了电池主要材料中影响循环寿命的主要因素。通过扫描电子显微镜法(SEM)、能量散射光谱(EDS)、X射线衍射光谱法(XRD)等测试分析比较这几种主要材料,发现隔膜在循环前后的差异最小;循环后负极极片表面脱落较多,且极片表面有颗粒状物质;正极极片表面脱落较少,但其SEM图中表面形貌有开裂,XRD数据分析有结构方面的变化。  相似文献   

9.
以LiNi0.6Co0.2Mn0.2O为主要正极材料制备锂离子电池,通过循环伏安法、电化学阻抗谱和恒电流间歇滴定技术研究了过充状态、过放状态和正常使用条件下锂离子电池电化学参数变化规律。结果表明,锂离子电池在过充、过放时,固体电解质界面(SEI)膜遭到破坏,电荷转移和离子扩散难度增加,电池整体电阻增大,安全性降低;然而,以恒电流间歇滴定方式将电池过充到4.5 V时,电池正、负极材料结构的改变具有可逆性,电池可以恢复到正常状态;将电池过放至2.5 V后,正极或负极材料的结构遭到严重破坏,该破坏过程不可逆。该项研究结果对于明确荷电状态对电池整体性能的影响、开发新型电池检测技术并进行电池安全设计具有重要意义。  相似文献   

10.
史金涛  余传军  李倩 《电源技术》2021,45(11):1409-1411,1470
研究了高镍-石墨体系锂离子电池在25℃,4种循环倍率(0.5 C,1 C,2 C,阶梯充)下的循环性能及直流内阻,并采用EIS对电池不同健康状态进行研究,辨识电池循环过程中的阻抗变化规律.研究表明,电池在0.5 C循环时寿命衰减最快,阶梯充电的寿命和内阻性能最好.EIS分析表明,电池前600次循环,电荷转移阻抗减小,然后随着循环的进行,电池电荷转移阻抗及总阻抗都持续增大.  相似文献   

11.
研究了18650型锂离子电池常温循环性能和容量衰减机理。采用恒流-恒压制式对锂离子电池进行200次充放电循环测试,用交流阻抗技术对不同循环次数的电池进行分析,将不同循环次数的电池正负极与锂片分别组成半电池测试其容量,利用扫描电子显微镜法(SEM)、X射线衍射光谱法(XRD)、空气渗透仪等测试手段对不同循环次数后的锂离子电池正负极、隔膜的形貌和结构进行了表征。结果表明,电池在前200次循环过程中容量衰减率为15.6%;而正极和负极容量分别损失6.6%和4.3%。电池容量衰减主要来自于活性锂离子的损失以及电极活性材料的损失,活性锂离子的损失可能是由于在循环过程中电解液与正负极活性材料反应不断消耗活性锂离子造成的;正极活性材料层状结构规整度下降,离子混排度提高,负极活性材料上沉积钝化膜,石墨化程度降低,隔膜孔隙率下降,导致电池电荷传递阻抗增大,脱嵌锂能力下降,从而导致容量的损失。  相似文献   

12.
高容量MH-Ni电池的研究   总被引:1,自引:0,他引:1  
研究了MH Ni电池容量的开发。采用在MH Ni电池正极中加入氧抑制剂、负极中添加氧催化剂并进行电极表面修饰、电解液中加入特殊添加剂等方法来研究开发高容量MH Ni电池。研究表明 :本研究显著提高了正极活性物质的利用率 ,增强了负极氧复合能力 ,使MH Ni电池容量比原来增加 2 0 %~ 3 0 % ,AA型电池容量从 1 1 0 0mAh提高到 1 40 0mAh。采用本研究工艺所得电池还具有内压低 ,耐过充电性能好 ;内阻小 ,放电电位高 ,放电平台长 ;循环寿命长 ,标准充放电循环寿命超过 1 0 0 0次 ,快速充放电循环寿命为 5 0 0次以上 ;自放电率小等优异性能。  相似文献   

13.
采用三元材料(NCM)为正极活性物质,人造石墨与软碳为负极材料制成20 Ah的锂离子铝壳电池,研究了电池的电化学性能,实验表明:单体电池的循环寿命达到2 000次,容量保持率仍然在80%以上;低温-20℃放出87.79%的容量,高温55℃放出100%的容量,表现了很好的高低温性能;以3 C充电充入容量的80%,其中恒流充入整个容量的95%,5 C放电放出设计容量的96.35%;倍率性能也有较好的表现。制备的三元体系汽车用动力锂电池,具有较宽的使用温度范围和较长的循环寿命,满足了汽车用使用要求。  相似文献   

14.
采用密度泛函理论研究锂离子电池正极成膜添加剂硼酸三异丙酯(TPBi)的作用机理。通过充电微分曲线和交流阻抗谱,研究TPBi用作电解液添加剂的电化学行为;采用XRD、SEM和透射电镜测试,分析层状富锂正极材料的晶相结构和表面形貌;使用电感耦合等离子体发射光谱,对锂片表面进行分析。TPBi能优先于电解液在层状富锂正极材料表面氧化,形成保护膜,抑制电解液的分解,减少过渡金属离子的溶出,改善正极材料的循环性能和倍率性能。2%TPBi用作添加剂在2.0~4.8 V充放电,层状富锂正极材料以0.5 C循环190次,容量保持率从未添加的26%提升到90%,4.0 C放电比容量从未添加的96 m Ah/g提升到136 m Ah/g;石墨负极材料以0.5 C循环200次,容量保持率从未添加的22%提高到83%。  相似文献   

15.
复合技术制备锂二次电池电极材料   总被引:3,自引:0,他引:3  
复合技术是进一步提高材料的物理化学性能和/或降低成本的有效方法之一,早就应用于锂二次电池中。综述了最近几年来复合技术在制备锂二次电池电极材料方面的进展。这些电极材料包括负极材料如碳基负极、锡基氧化物负极和新型的合金负极、以及无机和有机正极材料。复合的方法包括包覆、混合、沉积等。通过复合,提高了天然石墨的循环性能,降低了无定形碳在第1次循环的不可逆容量并改进了循环性能,改善了合金负极材料的循环寿命,明显提高了无机正极材料的高温性能及循环性能,并使有机正极材料的循环性能达到可实用化的水平。随着复合技术的不断发展,一些新的电极材料将不断诞生,其它类型锂二次电池的商品化将为期不远。  相似文献   

16.
锂离子动力电池在使用过程中会发生电池鼓胀,既影响电池的寿命,也会由于其鼓胀超过模组框架允许极限而发生模组框架的破坏,进而引发安全事故,因此研究动力电池生命周期内膨胀力的变化规律对于提升电池性能及安全具有重要意义。总结了NCM622三元和磷酸铁锂体系动力电池使用寿命过程中机械力的变化规律,研究结果表明:(1)无论是三元体系还是磷酸铁锂体系动力电池,都会随着容量的衰减,膨胀力逐渐增加;(2)在单次充放电过程中三元电池由于正极材料晶胞体积变化很小,电池形变主要受负极材料影响,所以内部鼓胀力随着电压的增长而增加;磷酸铁锂电池由于正极材料在充放电过程中的变化影响,在充电和放电过程中电池膨胀力会分别出现波谷;(3)三元电池和磷酸铁锂电池的循环容量衰减和膨胀力增加均符合线性关系,循环过程中磷酸铁锂电池的容量衰减较三元电池慢,且磷酸铁锂电池膨胀力增长也小于三元电池。膨胀力的变化规律为防爆阀的泄爆压力和模组结构强度设计提供重要依据。研究表明释放循环过程中的膨胀力可以提升电池的使用寿命。  相似文献   

17.
罗红宇  张杰 《电源技术》2002,26(5):339-340
研究了正极合金材料、负极添加剂和正负板栅比例对深循环铅酸蓄电池循环寿命的影响。试验表明 :在Pb Sb和Pb Ca合金中添加Cd ,提高了电池的循环寿命 ,而以Pb、Sb、Cd合金作为正极材料的电池寿命最长 ;适量的负极添加剂是提高电池低温性能和充电接受性能的关键 :用量过少 ,低温性能不好 ,用量过多 ,充电接受性能较差 ;合理的正负板栅比例可以提高电池的循环寿命  相似文献   

18.
吴小兰  王光俊  陈炜  张宏立 《电池》2017,(6):347-350
选用LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2(NCM)和LiMn_(0.8)Fe_(0.2)PO_4(LMFP)复合正极材料,与石墨负极材料制成额定容量为38 Ah的2714891型电池,研究55℃下电池的循环性能,对影响循环性能的电解液和电极进行分析。负极容量衰减是高温循环性能衰减的主要因素,负极石墨比容量测试分析发现其容量损失占负极总损失的85.1%。石墨电化学阻抗谱(EIS)测试结果表明:高温循环后,石墨表面脱嵌锂活性降低,电化学反应难度增大;扫描电子显微镜(SEM)与BET比表面积测试表明:石墨表面结构破坏,体相发生膨胀。石墨本征结构的变化,是负极劣化的主要因素。  相似文献   

19.
李爱霞  余海军  谢英豪 《电池》2024,(1):111-115
从退役锂离子电池中回收锂是解决锂资源短缺的重要途径之一。从退役锂离子电池产业链出发,分别研究退役三元正极材料和磷酸铁锂(LiFePO4)锂离子电池中定向循环回收制锂的技术进展,分析不同技术优缺点,并展望该工艺的发展趋势和前景。三元正极材料锂离子电池前端提锂工艺有助于提高锂回收率,磷酸铁锂锂离子电池湿法回收有较高的锂回收率。同时,提出构建高效低成本浸出体系、优化低温焙烧体系,构建全链条一体化定向循环低碳回收体系的设想。  相似文献   

20.
MH-Ni电池的发展现状与展望   总被引:13,自引:3,他引:13  
MH-Ni电池是近年来碱性蓄电池领域的研究热点,本文介绍了MH-Ni电池领域在贮氢材料、金属氢化物负极、镍正极以及电池性能水平等方面的研究进展和良好的发展前景。重点介绍了贮氢材料比容量的提高及循环寿命特性的改进、镍正极体积比容量的提高以及负极表面改性等方面的研究情况,并对MH-Ni电池的综合性能的提高如电池的容量、倍率放电特性、循环寿命性能的研究进展以及MH-Ni电池的产业化状况作了简要介绍  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号