首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The Angolan margin is the type area for raft tectonics. New seismic data reveal the contractional buffer for this thin-skinned extension. A 200-km-long composite section from the Lower Congo Basin and Kwanza Basin illustrates a complex history of superposed deformation caused by: (1) progradation of the margin; and (2) episodic Tertiary epeirogenic uplift. Late Cretaceous tectonics was driven by a gentle slope created by thermal subsidence; extensional rafting took place updip, contractional thrusting and buckling downdip; some distal folds were possibly unroofed to form massive salt walls. Oligocene deformation was triggered by gentle kinking of the Atlantic Hinge Zone as the shelf and coastal plain rose by 2 or 3 km; relative uplift stripped Paleogene cover off the shelf, provided space for Miocene progradation, and steepened the continental slope, triggering more extension and buckling. In the Neogene, a subsalt half graben was inverted or reactivated, creating keystone faults that may have controlled the Congo Canyon; a thrust duplex of seaward-displaced salt jacked up the former abyssal plain, creating a plateau of salt 3–4 km thick on the present lower slope. The Angola Escarpment may be the toe of the Angola thrust nappe, in which a largely Cretaceous roof of gently buckled strata, was transported seawards above the thickened salt by up to 20 km.  相似文献   

2.
Regional extension which initiates and promotes the rise of salt diapirs can also make diapirs fall once the supply of salt from its source is restricted. New observations on the 3D seismic data from a salt diapir in the Sørvestsnaget Basin suggest that salt moves until the end of the Eocene and is subtle to minor readjustments afterwards, revealing a more complex kinematics that previously described. Observations such as salt horns and sags and an antithetic fault linked to the western flank of the diapir suggest that salt syn-kinematics during Middle-Late Eocene included passive rising of the salt, followed by a fall. The salt horns are remnants of a taller salt diapir that, together with the indentation of the Middle-Late Eocene syn-kinematic sediment overburden above the salt, indicate diapiric fall due to restriction of salt supply by extension. Post-kinematic readjustments did not include diapiric reactivation by tectonic compression as previously thought, but minor salt rise by shortening due to gravity gliding after the tilting of the margin during Plio-Pleistocene glacial sediment loading and differential compaction of surrounding sediments. The salt diapir appears to be presently inactive and salt supply may have been restricted from its source already since Late Eocene.  相似文献   

3.
The Ukrainian Dniepr-Donets Basin (DDB) is a Late Palaeozoic intracratonic rift basin, with sedimentary thicknesses up to 19 km, displaying the effects of salt tectonics during its entire history of formation, from Late Devonian rifting to the Tertiary. Hundreds of concordant and discordant salt structures formed during this time. It is demonstrated in this paper that the variety of styles of salt structure formation in the DDB provide important constraints on understanding the triggering and driving mechanisms of salt kinematics in sedimentary basins in general. Salt movement in the DDB began during the Devonian syn-rift phase of basin development and exerted controls on the later distribution of salt structures though the geometry of basement faults is not directly responsible for the regular spacing of salt structures. Post-rift salt movements in the DDB occurred episodically. Episodes of salt movement were triggered by tectonic events, specifically two extensional events during the Carboniferous, an extensional reactivation at the end of Carboniferous–earliest Permian, and a compressional event at the end of the Cretaceous. Extensional events that induced salt movement were ‘thick-skinned’ (i.e. basement involved in deformation) rather than ‘thin-skinned’. Most overburden deformation related to salt movements is ductile regardless of sedimentary bulk lithology and degree of diagenesis, while the deformation of sedimentary cover in areas where salt is absent is mainly brittle. This implies that the presence of salt changes the predominant mode of deformation of overlying sedimentary rocks. Episodes of salt movement lasted longer than the periods of active tectonics that initiated them. Buoyancy, erosion, and differential loading all played a role in driving halokinesis once tectonic forces had pushed the salt-overburden system into disequilibrium; among these factors, erosion of overburden above growing salt structures acted as a key self-renewing force for development of salt diapirs. Very high sedimentation rates (related to high post-rift tectonic subsidence rates), particularly during the Carboniferous, were able to bury diapirs and to load salt bodies such that buoyancy, erosion, and differential loading forces eventually became insufficient to continue driving diapirism—until the system was perturbed by an ensuing tectonic event. In contrast, some salt anticlines and diapirs developed continuously during the entire Mesozoic because of much-reduced tectonic subsidence rates (and sedimentation supply) during this time. However, a Lower Permian salt series and overhangs of buried diapirs played an important role in preventing overburden piercing (and fracturing) during the Mesozoic and, specifically, during the Late Cretaceous salt diapirism phase.  相似文献   

4.
Seismic reflection profiles and long- and medium-range sidescan sonar were used to investigate a salt diapir complex and area of slope instability near the base of the Continental Slope off North Carolina. Within the area of investigation three diapirs are bounded on their upslope side by a scarp 60 m high and 50 km long. The slope above the scarp is characterized by a series of shallow rotational normal faults. The bottom below the scarp is furrowed by slide tracks, which were probably carved by large blocks that broke off the scarp face and slid downslope leaving rubble and scree lobes.Extensive slumping in this area appears to be a result of uplift and faulting associated with salt intrusion, which has fractured and oversteepened the slope leading to instability and failure. Sharply defined slide tracks suggest that slope failure above the breached diapir complex is a continuing process, in contrast to much of the surrounding slope area where few instability features were observed.  相似文献   

5.
Using the new high-quality 3D seismic data, this paper addresses the salt structures in the KL11 area of the Laizhouwan depression in the southern offshore Bohai Bay basin. In the study area, the salt in the Sha-4 Member of the Paleogene Shahejie Formation thickened, and then formed an S–N trending salt wall, which changes shape regularly along its trend from salt diapir to salt pillow. The change in thickness of the suprasalt layers record five growth phases of the salt wall from the Eocene to the Quaternary: (1) early diapirism, (2) active diapirism, (3) passive diapirism, (4) relative structural quiescence, and (5) arching. The evolution of the salt structures was mostly governed by the multi-phase compression induced by the dextral strike-slip of the Tan–Lu fault, which formed a restraining bend in the study area. There was an original passive stock in the south, which was later tectonically squeezed by E–W compression and became a diapir. As the shortening propagated to the north from the original stock, the salt pillow was created in the north. Relative structural quiescence then followed until the next phase of compression, which arched the thick roof of the salt wall.  相似文献   

6.
Seismic reflection data indicate the Moroccan salt basin extends to the Cap Boujdour area in the Aaiun Basin. Two salt diapir structures have been identified and several areas of collapsed strata indicate probable salt removal at the shelf edge. The presence of salt in this area correlates to the conjugate southern George's Bank Basin and the Baltimore Canyon area, and it is suggested that the salt extends southward from the known salt diapir province in the George's Bank Basin southward to the Great Stone Dome. The paucity of salt diapirs is attributed to the thick carbonate and anhydrite sequence, which was deposited soon after salt deposition that inhibited halokinesis. The presence of salt along this large segment of the Atlantic margin should increase its hydrocarbon potential with traps created around salt diapirs and provision of migration pathways from deep potential source rocks in the early Cretaceous and Jurassic strata to shallower levels.  相似文献   

7.
The structural analysis of regional 3D seismic data shows evidence of long-term tectonic inheritance in Campos Basin, offshore Brazil. Main Lower Cretaceous rift structures controlled themselves by strike-slip deformation belts related to Proterozoic orogenic events, have been episodically reactivated during the divergent margin phase of Campos Basin, from the Albian to the Miocene. Balanced cross-sections of major salt structures indicate that such tectonic reactivations have been controlling thin-skinned salt tectonics, triggering pulses of gravitational gliding above the Aptian salt detachment. Additionally, major basin features like the Neogene progradation front and the salt tectonic domains are constrained by the main Proterozoic orogenic trends of the Ribeira Belt (NE–SW) and the Vitória-Colatina Belt (NNW–SSE). As the basement involved structures observed in Campos Basin can be attributed to general geodynamic processes, it is suggested that basement tectonic reactivation can be as relevant as isostatic adjustment and detached thin-skinned tectonics on the structural evolution of divergent margin settings.  相似文献   

8.
西非被动大陆边缘盐构造样式与成因机制   总被引:1,自引:0,他引:1  
基于三维地震资料,对西非陆缘盐构造样式及分布特征进行了刻画,剖析了其形成演化机制与控制因素。西非陆缘盐上地层滑脱形成典型的薄皮构造,前缘发育挤压变形,后缘发育拉张变形,两者之间为过渡变形。拉张区发育白垩系盐筏、前盐筏、新近系盐筏等盐构造;过渡变形区以发育各种底辟构造为特征;挤压变形区主要发育侵位盐席构造。重力滑脱作用是被动陆缘盐构造发育过程中始终存在的驱动机制,重力扩展作用在大陆边缘成熟阶段作用明显,在陆缘演化早期并不突出。陆缘构造活动控制盐构造的形成,差异沉积负载作用影响着盐上地层滑移特征,而盐下底形对盐岩流动、盐上地层滑移速率及相关断裂体系的产生与沉积响应具有重要影响。  相似文献   

9.
We report the structural geometry and facies architecture of a small diapir-related carbonate-dominated basin from the Jurassic rift of the Moroccan High Atlas. The Azag minibasin is a lozenge-shaped depocenter completely enclosed by tectonic boundaries that we interpret as welds after former salt anticlines or salt walls. The exposed ca. 3000 m-thick infill of the Azag minibasin is asymmetric; layers are tilted to the W defining a rollover geometry. Areally-restricted sedimentary discontinuities and wedges of growth strata near the basin margins indicate sedimentation contemporaneous with diapiric rise of a Triassic ductile layer. Facies evolution through the basin reflects local accommodation by salt withdrawal and regional events in the High Atlas rift. The early basin infill in the Sinemurian and Pliensbachian shows thickness variations indicative of low-amplitude halokinetic movements, with reduced exposed thicknesses compared to surrounding areas. The exposed Toarcian and Aalenian deposits are also reduced in thickness compared to areas outside the basin. Subsidence increased dramatically in the Bajocian-early Bathonian (?), the main phase of downbuilding, when over 2600 m of carbonates and shales accumulated at a rate > 0.5 mm/a in the depocentral area of the minibasin governed by W-directed salt expulsion. The stratigraphic units distinguished often show maximum thicknesses and deeper facies in the depocentral area, and rapidly change to shallower facies at the basin margins. The Bajocian carbonate facies assemblage of the minibasin include: reservoir facies as microbialite-coral reefs in the basin margins (formed during periods of strong diapir inflation and bathymetric relief), basin-expansive oolite bars (formed during episodes of subdued relief), and organic-rich, dark lime mudstones and shales that show source-rock characteristics. The Azag basin is a good analog for the exploration of salt-related carbonate plays in rifts and continental margins where source-rock and reservoir can form in a same minibasin.  相似文献   

10.
Various studies have demonstrated the intrinsic interrelationship between tectonics and sedimentation in salt-related rift basins during extension as well as during their inversion by compression. Here, we present seven brittle–ductile analogue models to show that the longitudinal or transverse progradation of sediment filling an elongate extensional basin has a substantial impact on the growth of diapirs and their lateral geometrical variations. We use five extensional models to reveal how these prograding systems triggered diapir growth variations, from proximal to distal areas, relative to the sedimentary source. In the models, continuous passive diapir walls developed, after a short period of reactive–active diapiric activity, during syn-extensional homogeneous deposition. In contrast, non-rectilinear diapir walls grew during longitudinal prograding sedimentation. Both longitudinal and transverse post-extensional progradation triggered well-developed passive diapirs in the proximal domains, whereas incipient reactive–active diapirs, incipient roller-like diapirs, or poorly developed diapirs were generated in the distal domains, depending on the modelled sedimentary pattern. Two models included final phases of 6% and 10% shortening associated with basin inversion by compression, respectively, to discriminate compressional from purely extensional geometries. With the applied shortening, the outward flanks of existing diapir walls steepened their dips from 8°–17° to 30°–50°. Likewise, 6% of shortening narrowed the diapir walls by 32%–72%, with their fully closing (salt welds) with 10% of shortening. We compare our results with the distribution of salt walls and minibasins of the Central High Atlas diapiric basin in Morocco, which was infilled with a longitudinally prograding mixed siliciclastic and carbonatic depositional sequence during the Early–Middle Jurassic with a minimum thicknesses of 2.5–4.0 km.  相似文献   

11.
Regional extension of a brittle overburden and underlying salt causes differential loading that is thought to initiate the rise of reactive diapirs below and through regions of thin overburden. We present a modern example of a large salt diapir in the Dead Sea pull-apart basin, the Lisan diapir, which we believe was formed during the Quaternary due to basin transtension and subsidence. Using newly released seismic data that are correlated to several deep wells, we determine the size of the diapir to be 13×10 km, its maximum depth 7.2 km, and its roof 125 m below the surface. From seismic stratigraphy, we infer that the diapir started rising during the early to middle Pleistocene as this section of the basin underwent rapid subsidence and significant extension of the overburden. During the middle to late Pleistocene, the diapir pierced through the extensionally thinned overburden, as indicated by rim synclines, which attest to rapid salt withdrawal from the surrounding regions. Slight positive topography above the diapir and shallow folded horizons indicate that it is still rising intermittently. The smaller Sedom diapir, exposed along the western bounding fault of the basin is presently rising and forms a 200 m-high ridge. Its initiation is explained by localized E–W extension due monoclinal draping over the edge of a rapidly subsiding basin during the early to middle Pleistocene, and its continued rise by lateral squeezing due to continued rotation of the Amazyahu diagonal fault.  相似文献   

12.
Salt tectonics at passive margins is currently interpreted as a gravity-driven process but according to two different types of models: i) pure spreading only driven by differential sedimentary loading and ii) dominant gliding primarily due to margin tilt (slope instability). A comparative analysis of pure spreading and pure spreading is made using simple mechanics as well as available laboratory experiments and numerical models that consider salt tectonic processes at the whole basin scale. To be effective, pure spreading driven by sedimentary loading requires large differential overburden thicknesses and therefore significant water depths, high sediment density, low frictional angles of the sediments (high fluid pore pressure) and a seaward free boundary of the salt basin (salt not covered by sediments). Dominant gliding does not require any specific condition to be effective apart from the dip on the upper surface of the salt. It can occur for margin tilt angles lower than 1° for basin widths in the range of 200-600 km and initial sedimentary cover thickness up to 1 km, even in the absence of abnormal fluid pressure. In pure spreading, salt resists and sediments drive whereas in dominant gliding both salt and sediments drive. In pure spreading, extension is located inside the prograding sedimentary wedge and contraction at the tip. Both extension and contraction migrate seaward with the sedimentary progradation. Migration of the deformation can create an extensional inversion of previously contractional structures. In pure spreading, extension is located updip and contraction downdip. Extension migrates downdip and contraction updip. Migration of the deformation leads to a contractional inversion of previously extensional structures (e.g. squeezed diapirs). Mechanical analysis and modelling, either analogue or numerical, and comparison with margin-scale examples, such as the south Atlantic margins or northern Gulf of Mexico, indicate that salt tectonics at passive margins is dominated by dominant gliding down the margin dip. On the contrary, salt tectonics driven only by differential sedimentary loading is a process difficult to reconcile with geological evidence.  相似文献   

13.
Contraction induced by block rotation above salt (Angolan margin)   总被引:1,自引:0,他引:1  
Gravity spreading above salt at passive margins is the major mode of deformation of post-salt sediments. Whereas this process generally creates a structural zoning, extensional upslope and contractional downslope, discrepancies can however arise. For example, evidence of contractional deformation occurs in the extensional domain of the Angolan margin, to the south of the Congo delta fan. Slope-parallel seismic lines show grabens, rollover and extensional diapirs. Conversely, strike-parallel seismic lines present inversion of early grabens, apparently related to a regional-scale decrease in sedimentary thickness away from the Congo delta. As the spreading rate and the characteristic spacing of structures are direct functions of sedimentary loading, one can expect structural changes along strike due to sedimentary thickness variations. This hypothesis was tested using spreading-type experiments of brittle-ductile models lying on top of an inclined rigid substratum. The experiments simulate the progradation of a synkinematic sedimentary cover above salt, with a lateral variation of sedimentation rate. The models show that the spreading rate was higher in the thicker part. Early grabens initiated perpendicular to the slope direction. Where sedimentation rate was high, they kept their orientation during spreading and formed purely extensional synsedimentary structures: Grabens, rollovers and diapirs. Where sedimentation rate was low, blocks separated by grabens rotated in a domino-type fashion but this domain continued to extend in a slope-parallel direction. Strike slip between blocks was entirely localised within the early grabens, which inverted and formed anticlines. Structures obtained in experiments are directly comparable to those in seismic lines of the Angolan margin. In both the Angolan margin examples and the laboratory experiments, block rotation is interpreted as slope-parallel strike-slip shear zones due to lateral variations in spreading rate.  相似文献   

14.
The pre-Cretaceous basin evolution of the Feda Graben area in the vicinity of the Norwegian-Danish basin has been reconstructed utilizing geological and structural interpretation. The analysis reveals that the basin was faulted at its borders prior to the salt deposition in the Late Permian. Salt movement was initiated in Late Triassic and thick Triassic and Lower Jurassic pods were deposited in the graben area due to this movement. Salt pillows were developing along the Feda Graben bordering faults until Middle Jurassic when the pillows were collapsed. Salt diapirs within the study area preferentially occupy the crest of the Feda Graben and their occurrence is controlled by the underlying faulted topography. The diapirs were fed by salt from the central and southern parts of the basin and were developed by different processes i.e. upbuilding, downbuilding. Various raft structures were developed in the graben area hanging wall while some uplift occurred in the footwall during Mesozoic rifting. The Feda Graben area experienced rifting from Late Jurassic to Early Cretaceous. The most pronounced subsidence episode related with this rifting in the Feda Graben area took place along the eastern bounding Gert Fault. The Mesozoic rifting event is marked by a major unconformity on the seismic sections throughout the study area. Furthermore, the region experienced basin inversion in Late Cretaceous. The effects of inversion are more pronounced in the western part and along the Gert Fault. The inversion phenomenon can be properly understood only when considered together with the geometry of the Late Jurassic half-graben. Due to some inconsistencies in the previously proposed models for the development of the Feda Graben, a new conceptual model has been constructed.  相似文献   

15.
We compare an evolutionary with a static approach for modeling stress and deformation around a salt diapir; we show that the two approaches predict different stress histories and very different strains within adjacent wall rocks. Near the base of a rising salt diapir, significantly higher shear stresses develop when the evolutionary analysis is used. In addition, the static approach is not able to capture the decrease in the hoop stress caused by the circumferential diapir expansion, nor the increase in the horizontal stress caused by the rise of the diapir. Hence, only the evolutionary approach is able to predict a sudden decrease in the fracture gradient and identify areas of borehole instability near salt. Furthermore, the evolutionary model predicts strains an order of magnitude higher than the strains within the static model. More importantly, the evolutionary model shows significant shearing in the horizontal plane as a result of radial shortening accompanied by an almost-equivalent hoop extension. The evolutionary analysis is performed with ELFEN, and the static analysis with ABAQUS. We model the sediments using a poro-elastoplastic model. Overall, our results highlight the ability of forward evolutionary modeling to capture the stress history of mudrocks close to salt diapirs, which is essential for estimating the present strength and anisotropic characteristics of these sediments.  相似文献   

16.
This study investigates the distribution and evolution of seafloor seepage in the vicinity of the salt front, i.e., the seaward boundary of salt-induced deformation in the Lower Congo Basin (LCB). Seafloor topography, backscatter data and TV-sled observations indicate active fluid seepage from the seafloor directly at the salt front, whereas suspected seepage sites appear to be inactive at a distance of >10 km landward of the deformation front. High resolution multichannel seismic data give detailed information on the structural development of the area and its influence on the activity of individual seeps during the geologic evolution of the salt front region. The unimpeded migration of gas from fan deposits along sedimentary strata towards the base of the gas hydrate stability zone within topographic ridges associated with relatively young salt-tectonic deformation facilitates seafloor seepage at the salt front. Bright and flat spots within sedimentary successions suggest geological trapping of gas on the flanks of mature salt structures in the eastern part of the study area. Onlap structures associated with fan deposits which were formed after the onset of salt-tectonic deformation represent potential traps for gas, which may hinder gas migration towards seafloor seeps. Faults related to the thrusting of salt bodies seawards also disrupt along-strata gas migration pathways. Additionally, the development of an effective gas hydrate seal after the cessation of active salt-induced uplift and the near-surface location of salt bodies may hamper or prohibit seafloor seepage in areas of advanced salt-tectonic deformation. This process of seaward shifting active seafloor seepage may propagate as seaward migrating deformation affects Congo Fan deposits on the abyssal plain. These observations of the influence of the geologic evolution of the salt front area on seafloor seepage allows for a characterization of the large variety of hydrocarbon seepage activity throughout this compressional tectonic setting.  相似文献   

17.
The Campos, Santos and Pelotas basins have been investigated in terms of 2D seismo-stratigraphy and subsidence. The processes controlling accommodation space (e.g. eustacy, subsidence, sediment input) and the evolution of the three basins are discussed. Depositional seismic sequences in the syn-rift Barremian to the drift Holocene basin fill have been identified. In addition, the subsidence/uplift history has been numerically modeled including (i) sediment flux, (ii) sedimentary basin framework, (iii) relation to plate-tectonic reconfigurations, and (iv) mechanism of crustal extension. Although the initial rift development of the three basins is very similar, basin architecture, sedimentary infill and distribution differ considerably during the syn-rift sag to the drift basin stages. After widespread late Aptian–early Albian salt and carbonate deposition, shelf retrogradation dominated in the Campos Basin, whereas shelf progradation occurred in the Santos Basin. In the Tertiary, these basin fill styles were reversed: since the Paleogene, shelf progradation in the Campos Basin contrasts with overall retrogradation in the Santos Basin. In contrast, long-term Cretaceous–Paleogene shelf retrogradation and intense Neogene progradation characterize the Pelotas Basin. Its specific basin fill and architecture mainly resulted from the absence of salt deposition and deformation. These temporally and spatially varying successions were controlled by specific long-term subsidence/uplift trends. Onshore and offshore tectonism in the Campos and Santos basins affected the sediment flux history, distribution of the main depocenters and occurrence of hydrocarbon stratigraphic–structural traps. This is highlighted by the exhumation and erosion of the Serra do Mar, Serra da Mantiqueira and Ponta Grossa Arch in the hinterland, as well as salt tectonics in the offshore domain. The Pelotas Basin was less affected by changes in structural regimes until the Eocene, when the Andean orogeny caused uplift of the source areas. Flexural loading largely controlled its development and potential hydrocarbon traps are mainly stratigraphic.  相似文献   

18.
Diapir fall, which was predicted by physical models, has been identified in salt provinces, such as the South Atlantic margins, the North Sea, and the Paradox Basin (Colorado–Utah). However the 3-D geometry of falling diapirs and their country rock is still poorly understood. 3-D visualization and isochore patterns from a physical model help elucidate this geometry.The model initially comprised a unit of viscous silicone overlain by a prekinematic sand unit. Sand units representing brittle sediments were deposited episodically during gravity gliding and spreading. Regional extension triggered and eventually widened salt walls, causing them to sag. The 3-D visualization shows that regional hydrocarbon migration, which tends to be seaward during diapir rise and landward during diapir fall, can potentially be orthogonal to local migration along grabens at soft-linked zones of relay ramps. Furthermore, anticlinal culminations may form (1) in horsts that bend along strike and (2) adjoining the fork of Y-shaped salt walls.Sequential isochore maps of the overburden show how patterns of sedimentation, deformation, and underlying salt thickness changed through time. Isochores of prekinematic units record only strain: thinned belts record early extension. In contrast, isochores of synkinematic units record mostly thickness variations due to deposition on actively deforming topography. Isochores above sagging diapirs identify the thickest part of crestal depocenters, where the most rapid sagging occurred in regions of maximum extension near the unbuttressed downdip part of the gravity-spreading system. Additionally, asymmetric isochore patterns may reveal underlying half-grabens or tilted symmetric grabens. In relay systems, overlying isochores may indicate which part of a salt wall rose to compensate for sagging elsewhere in the relay.  相似文献   

19.
We model the evolution of a salt diapir during sedimentation and study how deposition and salt movement affect stresses close to the diapir. We model the salt as a solid visco-plastic material and the sediments as a poro-elastoplastic material, using a generalized Modified Cam Clay model. The salt flows because ongoing sedimentation increases the average density within the overburden sediments, pressurizing the salt. Stresses rotate near a salt diapir, such that the maximum principal stress is perpendicular to the contact with the salt. The minimum principal stress is in the circumferential direction, and drops near the salt. The mean stress increases near the upper parts of the diapir, leading to a porosity that is lower than predicted for uniaxial burial at the same depth. We built this axisymmetric model within the large-strain finite-element program Elfen. Our results highlight the fact that forward modeling can provide a detailed understanding of the stress history of mudrocks close to salt diapirs; such an understanding is critical for predicting stress, porosity, and pore pressure in salt systems.  相似文献   

20.
The central part of the Zagros Fold-Thrust Belt is characterized by a series of right-lateral and left-lateral transverse tear fault systems, some of them being ornamented by salt diapirs of the Late Precambrian–Early Cambrian Hormuz evaporitic series. Many deep-seated extensional faults, mainly along N–S and few along NW–SE and NE–SW, were formed or reactivated during the Late Precambrian–Early Cambrian and generated horsts and grabens. The extensional faults controlled deposition, distribution and thickness of the Hormuz series. Salt walls and diapirs initiated by the Early Paleozoic especially along the extensional faults. Long-term halokinesis gave rise to thin sedimentary cover above the salt diapirs and aggregated considerable volume of salt into the salt stocks. They created weak zones in the sedimentary cover, located approximately above the former and inactive deep-seated extensional faults. The N–S to NNE–SSW direction of tectonic shortening during the Neogene Zagros folding was sub-parallel with the strikes of the salt walls and rows of diapirs. Variations in thickness of the Hormuz series prepared differences in the basal friction on both sides of the Precambrian–Cambrian extensional faults, which facilitated the Zagros deformation front to advance faster wherever the salt layer was thicker. Consequently, a series of tear fault systems developed along the rows of salt diapirs approximately above the Precambrian–Cambrian extensional faults. Therefore, the present surface expressions of the tear fault systems developed within the sedimentary cover during the Zagros orogeny. Although the direction of the Zagros shortening could also potentially reactivate the basement faults as strike-slip structures, subsurface data and majority of the moderate-large earthquakes do not support basement involvement. This suggests that the tear fault systems are detached on top of the Hormuz series from the deep-seated Precambrian–Cambrian extensional faults in the basement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号