首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
To gain more insight into the complex pulmonary interactions of endothelins (ET), we studied airway and vascular responses to endothelins in isolated perfused rat lungs in the presence of the novel ET(B)-receptor antagonist BQ788. In particular we focused on airway responses and on prostacyclin release. The effectiveness of BQ788 in our system was shown by its ability to concentration-dependently prevent vasoconstriction (IC50 0.1 microM), bronchoconstriction (IC50 0.1 microM) and prostacyclin production (IC50 < 0.1 microM) induced by the ET(B)-receptor agonist IRL1620 (1 nmol). Airway responses to ET-1: ET-1-induced bronchoconstriction was aggravated by BQ123 (1 or 8 microM), while BQ788 pretreatment (1 or 8 microM) showed no significant effect. Simultaneous treatment with 8 microM BQ123 and BQ788 attenuated the ET-1-induced bronchoconstriction. Vascular responses to ET-1: ET-1 (1 nmol)-induced vasoconstriction was potentiated by BQ788 (1 or 8 microM), but attenuated by the ET(A)-receptor antagonist BQ123 (1 microM). In the presence of BQ788 diminished amounts of the stable prostacyclin metabolite 6-keto-PGF1alpha were detected in the perfusate. Simultaneous treatment with 8 microM BQ123 and BQ788 completely prevented the ET-1-induced vasoconstriction. Conclusions: Both ET(A)- and ET(B)-receptors contribute to ET-1-induced vasoconstriction and bronchoconstriction. The ET-1-induced vasoconstriction is attenuated by stimulation of ET(B)-receptors, a response that is partly mediated by prostacyclin. Due to the mutual interactions between ET(A)- and ET(B)-receptors, simultaneous inhibition of both receptors is required to prevent the deleterious effects of ET-1 on lung functions.  相似文献   

2.
3.
Endothelin-1 (0.1, 1 and 10 nM) induced a significant increase in portal pressure and nitric oxide (NO) release in the isolated rat liver. The endothelin ET(B) receptor agonist, IRL 1620 (Suc-[Glu9,Ala(11,15)]endothelin-1-(8-21)) (0.1, 1 and 10 nM) also elicited a marked increase in portal pressure and NO release. The potency of endothelin-1 was higher than that of IRL 1620. The endothelin ET(A) receptor antagonist, BQ-123 (cyclo(-D-Trp-D-Asp-Pro-D-Val-Leu)) (1 and 10 microM), had no effect on the endothelin-1-induced change in portal pressure and NO current. In contrast, the endothelin ET(B) receptor antagonist, BQ-788 (N-cis-2,6-dimethylpiperidinocarbonyl-L-gamma-methyl-leucyl-D-1-++ +methoxycarbonyltryptophanyl-D-norleucine) (1 and 10 nM), attenuated the endothelin-1-induced change in portal pressure and NO current. Administration of N(G)-monomethyl-L-arginine (L-NMMA), a NO synthase inhibitor, completely abolished the endothelin-1- or IRL 1620-induced NO release. L-NMMA enhanced the increase in portal pressure and decrease in O2 consumption caused by endothelin-1. These results indicated that endothelin ET(B) receptors mediate both vasoconstriction and NO release and that NO plays a significant role in stabilizing microcirculation in isolated perfused rat liver.  相似文献   

4.
1. The receptors mediating endothelin-evoked contraction of human coronary artery have been investigated in isolated segments of the left anterior descending coronary artery (LAD). 2. Endothelin-1 (ET-1) was 10 times more potent in distal than in proximal segments but the potency ratio between ET-1 and ET-3 (endothelin-3) was similar and close to 100 in any segment of the artery. 3. BQ-123, an ETA receptor antagonist, competitively antagonized the response to ET-1 of distal segments (pA2 equal to 7.47). In the proximal segments, part of the contractile response was BQ123 sensitive, but the antagonism was non-competitive. In both groups of segments, the response to ET-3 could be completely blocked by BQ-123. 4. These observations indicate that ETA receptors mediate the contractile response to ET-1 in distal, pre-resistant coronary arteries, but that other ET receptors are also involved in the contractile response of proximal segments.  相似文献   

5.
The aim of the present study was to characterize pharmacologically endothelin receptors that are present in human umbilical vessels. 2. Endothelin-1 (ET-1) and endothelin-2 (ET-2) are potent stimulants of both the human umbilical artery (pEC50 7.9 and 7.5) and vein (pEC50 8.1 and 8.0). Endothelin-3 (ET-3) is inactive on the artery but contracts the vein (pEC50 7.6). IRL1620 is inactive in both vessels. The order of potency of agonists is suggestive of a typical ET(A) receptor in the artery (ET-1 = ET-2 > > ET-3) and a mixture of ET(A) and ET(B) receptors in the vein (ET-1 = ET-2 > or = ET-3). 3. The selective ET(A) receptor antagonist, BQ123, competitively inhibits the effect of ET-1 in the human umbilical artery (pA2 6.9), while in the vein, only a mixture of BQ123 and BQ788 (a selective ET(B) antagonist) weakly displaces to the right of the cumulative concentration-response curve to ET-1. Contractions induced by ET-3 in the vein are inhibited by BQ788 (pA2 7.6), but not by BQ123. 4. Inhibition of Ca2+ channels by nifedipine (0.1 microM) is accompanied by a significant decrease of the maximal response to ET-1 by 40% in the artery and by 30% in the vein. The response of the vein to ET-3 is almost abolished by nifedipine. 5. The results indicate that: (i) endothelins contract the human isolated umbilical artery via stimulation of an ET(A) receptor type; (ii) the contraction induced by ET-1 in the vein is mediated by both ET(A) and ET(B) receptors, while ET-3 stimulates the ET(B) receptor; (iii) the contribution of Ca2+ channels to the contraction mediated by the ET(B) receptor appears to be more important than to that mediated by the ET(A) receptor.  相似文献   

6.
The inhibitory effects of BQ 788 (3 mg/kg, i.v., ET(B)-receptor antagonist) on endothelin-1 (ET-1)- or IRL 1620 (ET(B)-receptor agonist)-induced changes in mean arterial pressure (MAP), mean circulatory filling pressure (MCFP, driving force of venous return), arterial resistance (RA), venous resistance (RV) and cardiac output (CO) were characterized in 6 groups of pentobarbital-anesthetized rats. ET-1 or IRL 1620 (0.5, 1 and 2 nmol/kg, i.v.) dose-dependently increased MAP, RA, RV and MCFP and decreased CO. Maximum changes in RA, RV and CO elicited by ET-1 were greater than those by IRL 1620. Equimolar doses of ET-1 and IRL 1620 also caused similar initial transient decreases in MAP. BQ 788 alone slightly elevated MCFP, but did not alter other variables. The ET(B)-blocker abolished all changes elicited by IRL 1620, but only partially inhibited its responses on MCFP, showing the presence of BQ 788-insensitive receptors. BQ 788 also abolished ET-1's depressor response, partially inhibited its effect on MCFP, and markedly augmented its effects on RA, RV and CO. Thus, ET(B)-receptors counteract the sustained constrictor effects of ET-1 on arterial and venous resistance vessels Our results indicate a substantial arterial and venous dilator role for ET(B) receptors.  相似文献   

7.
We previously suggested the presence of functionally atypical endothelin (ET) A receptors in the rabbit iris sphincter. Here, we further characterized the ET receptor by a radioligand-receptor binding study utilizing a membrane fraction of the rabbit iris. In addition, we functionally confirm the presence of an atypical ET(A) receptor in the iris dilator similar to that in the iris sphincter. In binding experiments, [125I]ET-1 was completely displaced by ET-3 in a biphasic fashion, but only partially by BQ-123 and ET(B) ligands. In the presence of RES-701, ET-3 and sarafotoxin (SRTX)-b completely displaced [125I]ET-1 in a monophasic fashion, but with shallow slopes. Moreover, ET-1, ET-3 and SRTX-b completely displaced [3H]BQ-123 with IC50 values of 0.8, 81 and 4.4 nM, respectively, but with slopes of ET-3 and SRTX-b being again shallow. In iris dilator muscles, ET-3 showed lower and SRTX-b showed higher contractile activities than ET-1. SRTX-c was inactive. BQ-123 more preferentially antagonized ET-3 and SRTX-b than ET-1, with the Schild plot slope of SRTX-b being shallow. Thus, functional experiments suggested the presence of atypical ET(A) receptors in the iris dilator similar to the iris sphincter. However, the binding experiments suggested the presence of rather typical ET(A)- and ET(B)-like receptors. Therefore, we apparently failed to show ET binding sites corresponding to functionally atypical ET(A) receptors.  相似文献   

8.
1. Endothelin (ET)-1 has been demonstrated to cause contraction of uterine smooth muscle. We investigated the role of ET receptor subtypes (ETA and ETB receptors) in ET-1-induced contraction of rat uterine smooth muscle by using the ETA receptor antagonist BQ-123 and the ETB receptor agonist BQ-3020. 2. ET-1 caused a contraction with superimposed oscillations of the rat isolated uterus suspended in Krebs-Ringer solution; both the amplitude of contraction as well as the oscillation frequency increased in a dose-dependent manner (10(-11)-10(-7)M). 3. BQ-123 (10(-6)M) markedly shifted the dose-response curve of ET-1 for both contractile effects and oscillation frequency to the right. 4. BQ-3020 (10(-11)-3 x 10(-7) M) did not cause uterine contraction; neither did it affect the dose-response curve of ET-1 for either the contractile effect or the increase in oscillation frequency. Thus, stimulation of ETB receptors is not involved in these responses. 5. The present findings suggest that ET-1-induced contractile responses and the increase in oscillation frequency in rat uterine smooth muscle is mediated through ETA receptors, and that ETB receptors play no role in these responses.  相似文献   

9.
1. In the oesophageal muscularis mucosae, we examined the effects of endothelin-1 (ET-1), endothelin-2 (ET-2), endothelin-3 (ET-3) and sarafotoxin S6c (SX6c) as agonists, and FR139317, BQ-123 and RES-701-1 as endothelin receptor antagonists. 2. All of the endothelins produced tonic contractions which were frequently superimposed on rhythmic motility in a concentration-dependent manner. The order of potency (-log EC50) was ET-1 (8.61)=SX6c (8.65)>ET-2 (8.40)>ET-3 (8.18). 3. FR139317 (1-3 microM) and BQ-123 (1 microM) caused parallel rightward shifts of the concentration-response curve to ET-1, but at higher concentrations caused no further shift. RES-701-1 (3 microM) caused a rightward shift of the concentration-response curve to ET-1, while RES-701-1 (10 microM) had no additional effect. RES-701-1 (0.1-1 microM) concentration-dependently caused a rightward shift of the concentration-response curve to SX6c. The contraction to ET-1 (10 nM) in preparations desensitized to the actions of SX6c was greatly inhibited by pretreatment with FR139317 (10 microM). 4. Modulation of the Ca2+ concentration in the Krebs solution caused the concentration-response curve to ET-1 or SX6c to shift to the right and downward as external Ca2+ concentrations decreased. Verapamil (30 microM) abolished rhythmic motility induced by ET-1 or SX6c. Ni2+ (0.1 mM) weakly inhibited ET-1- or SX6c-induced tonic contraction. SK&F 96365 (60 microM) completely inhibited ET-1-induced contractions. 5. We conclude that there are two types of ET-receptors, excitatory ET(A)- and ET(B)-receptors in the oesophageal muscularis mucosae. These receptors mediate tonic contractions predominantly by opening receptor-operated Ca2+ channels (ROCs) and partly by opening T-type Ca2+ channels, and mediate rhythmic motility by opening L-type Ca2+ channels.  相似文献   

10.
The endothelin (ET) receptor that mediates vasoconstriction of the isolated rabbit pulmonary resistance artery was characterized using selective ET receptor agonists and antagonists. We also examined changes in ET-induced vasoconstriction brought about by left ventricular dysfunction using the rabbit coronary ligation model. The rank order of potency for contraction was sarafotoxin S6c (S6c) > ET-1 = ET-3, which is characteristic of an ETB-like receptor. The combined ETA/ETB receptor antagonist SB209670 (1 microM) antagonized responses to ET-1 and S6c with estimated pKb values of 6.8 +/- 0.2 and 7.8 +/- 0.2, respectively. BQ788 (1 microM) antagonized responses to S6c and ET-3 (but not ET-1) with estimated pKb values of 7.1 +/- 0.2 and 6.6 +/- 0.1, respectively. The ETA receptor antagonist FR139317 (1 microM), either alone or in combination with BQ788, did not inhibit responses to ET-1. The profile of the ET-1 response was not altered by left ventricular dysfunction. In control rabbits, the inhibitor of nitric oxide synthase N omega-nitro-L-arginine methyl ester (100 microM) had no significant effect on the potency of either ET-1 or S6c. In the coronary-ligated rabbits, however, it significantly increased the potency (10-15-fold) of both ET-1 and S6c. These results suggest that the ET receptor that mediates contraction in rabbit pulmonary resistance arteries has the characteristics of an ETB-like receptor. The responses to ET-1 are not altered by LVD but may be modified by increased release of nitric oxide.  相似文献   

11.
OBJECTIVE: The aim of this study was to investigate the appearance of contractile endothelin (ET)-B receptors following organ culture in different vascular regions. METHOD: The contractile responses of vascular smooth muscle induced by ET-1 and the selective ETB receptor agonist sarafotoxin 6c (S6c) were investigated in circular segments representing eight vascular regions in the rat (aorta, femoral artery, mesenteric artery, branch of the mesenteric artery, proximal and distal parts of the caudal artery, femoral and mesenteric veins). To allow the ETB receptor to be expressed, the segments were placed in organ culture for 1 to 5 days. Pharmacological characterisation of the ET receptors was performed in mesenteric arterial segments. All contractile responses were measured in percentage of K(+)-induced contraction. RESULTS: ET-1 induced strong concentration-dependent contractions of all fresh (not cultured) segments. S6c had negligible effects on all fresh vessels with the exception of the mesenteric vein, where a small contraction was seen. After 1 day of organ culture all tested segments, with the exception of aorta and the proximal part of the caudal artery, showed concentration-dependent contractile responses to S6c which were further augmented after 5 days of culture. The ET-1-induced responses were only slightly affected by organ culture. Contractions induced by S6c were more enhanced in small arteries and veins than in larger arteries. Furthermore, the S6c-induced response was more pronounced in the mesenteric region as compared to the hindlimb. In fresh mesenteric arterial segments FR139317 (ETA receptor antagonist) and bosentan (ETA/ETB receptor antagonist) but not IRL 2500 (ETB receptor antagonist) shifted the ET-1-induced concentration-response curve in parallel to the right. In contrast, after organ culture the S6c-induced concentration-response curves were shifted parallel to the right in the following potency order: IRL 2500 > bosentan > FR139317. CONCLUSION: During normal conditions, the ETA receptor is the dominating mediator of endothelin-induced contraction in eight different vascular regions. Furthermore, this study indicates that most of the vessels have the ability to develop contractile ETB receptors and that this plasticity differs in vascular regions.  相似文献   

12.
This study concerned the effects and mechanisms of action of endothelin-1 on the cerebral circulation. Cerebral blood flow was electromagnetically measured in awake goats. Endothelin-1 (0.01-0.3 nmol) produced dose-dependent decreases in this flow (maximal reduction = 34%) and increases in cerebrovascular resistance (maximal increase = 74%) (P < 0.01). IRL 1620 (Suc-[Glu9, Ala11,15]endothelin-1-(8-21), agonist for endothelin ET(B) receptors, 0.01-0.3 nmol) slightly decreased cerebral blood flow. The effects of endothelin-1, but not those of IRL 1620, on cerebral blood flow were diminished by 50% during infusion of the antagonist for endothelin ET(A) receptors, BQ-123 (cyclo-(D-Asp-Pro-D-Val-Leu-Trp), 2 nmol min(-1)), but not affected during infusion of the antagonist for endothelin ET(B) receptors, BQ-788 (N-[N-[N-[(2,6-dimethyl-1-piperidinyl)carbonyl]-4-methyl-L-Leucyl-1-(met hoxycarbonyl)-D-tryptophyl]-Dnorleucine monosodium), 2 nmol min(-1)). Intravenous administration of NW-nitro-L-arginine methyl ester (L-NAME, 47 mg kg(-1)) or NW-nitro-L-arginine (L-NNA, 47 mg kg(-1)) reduced basal cerebral blood flow by 39 and 33%, increased cerebrovascular resistance by 108 and 98% and mean arterial pressure by 23 and 17%, and decreased heart rate by 27 and 25%, respectively (all at least P < 0.05). The increases in cerebrovascular resistance (as absolute values) induced by endothelin-1 were not affected during either L-NAME or L-NNA (as absolute values and percentages). Intravenous administration of meclofenamate (5 mg kg(-1)) did not change the cerebrovascular effects of endothelin-1 and IRL 1620. In isolated goat cerebral arteries under control, resting conditions, endothelin-1 (10(-11)-10(-7) M) induced concentration-dependent contractions (EC50 = 4.78 X 10(-9) M; maximal contraction = 3177+/-129 mg), whereas IRL 1620 (10(-11)-10(-7) M) produced no effect. This contraction produced by endothelin-1 was competitively blocked by BQ-123 (10(-7)-3 X 10(-6) M), and was not affected by BQ-788 (10(-6) and 10(-5) M). L-NAME (10(-4) M), meclofenamate (10(-5) M), indomethacin (10(-5) M), L-NAME (10(-4) M) plus meclofenamate (10(-5) M) and phosphoramidon (10(-4) M) did not affect the contraction in response to endothelin-1. Endothelium removal increased the response to endothelin-1, as well as the BQ-123 antagonism against endothelin-1 (pA2 values, 7.62 vs. 6.88; P < 0.01). In both intact and de-endothelized arteries precontracted with prostaglandin F2alpha endothelin-1 induced a further contraction, and IRL 1620 caused no effect. These results suggest that: (1) endothelin-1 produces cerebral vasoconstriction by activating endothelin ET(A) receptors probably located in smooth muscle; (2) endothelin ET(B) receptors, nitric oxide and prostanoids might be not involved in the cerebrovascular action of endothelin-1, and (3) endothelium removal may increase cerebrovascular reactivity by increasing sensitivity of endothelin ET(A) receptors to endothelin-1.  相似文献   

13.
1. The effects of adenosine receptor agonists upon both electrically-evoked and phenylephrine-induced contractile responses were investigated in the bisected vas deferens and the cauda epididymis of the guinea-pig. Electrical field-stimulation (10 s trains of pulses at 9 Hz, 0.1 ms duration, supramaximal voltage) elicited biphasic and monophasic contractile responses from preparations of bisected vas deferens and cauda epididymis, respectively; these responses were abolished by tetrodotoxin (300 nM). 2. In the prostatic half of the vas deferens the A1 selective adenosine receptor agonists, N6-cyclopentyladenosine (CPA) and (2S)-N6-[2-endo-norbornyl]adenosine ((S)-ENBA) and the non-selective A1/A2 adenosine receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA) inhibited electrically-evoked contractions (pIC50+/-s.e.mean values 6.15+/-0.24, 5.99+/-0.26 and 5.51+/-0.24, respectively). The responses to CPA were blocked by the A1 adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine, DPCPX (100 nM). 3. In the epididymal half of the vas deferens NECA potentiated (at < or = 100 nM) and inhibited (at > or = 1 microM) electrically-evoked contractions. In the presence of the non-selective alpha-adrenoceptor antagonist phentolamine (3 microM), the alpha1-adrenoceptor antagonist, prazosin (100 nM), or at a reduced train length (3 s) NECA inhibited electrically-evoked contractions (pIC50 values 6.05+/-0.25, 5.97+/-0.29 and 5.71 +/-0.27, respectively). CPA (at 10 microM) also inhibited electrically-evoked contractions in this half of the vas deferens. In the presence of prazosin (100 nM), CPA also inhibited electrically-evoked contractions (pIC50 6.14+/-0.67); this effect was antagonized by DPCPX (30 nM, apparent pK(B) 8.26+/-0.88). In the presence of the P2 purinoceptor antagonist, suramin (300 microM), CPA (up to 1 microM) potentiated electrically-evoked contractions. 4. NECA, CPA and APNEA potentiated electrically-evoked contractions in preparations of cauda epididymis (pEC50 values 7.49+/-0.62, 7.65+/-0.74 and 5.84+/-0.86, respectively), the response to CPA was competitively antagonized by DPCPX (100 nM) with an apparent pK(B) value of 7.64+/-0.64. 5. The alpha1-adrenoceptor agonist phenylephrine elicited concentration-dependent contractile responses from preparations of bisected vas deferens and cauda epididymis. NECA (1 microM) potentiated responses to phenylephrine (< or = 1 microM) in the epididymal, but not in the prostatic half of the vas deferens. In preparations of epididymis NECA (1 microM) shifted phenylephrine concentration response curves to the left (4.6 fold). In the presence of a fixed concentration of phenylephrine (1 microM), NECA elicited concentration-dependent contractions of preparations of the epididymal half of the vas deferens and of the epididymis (pEC50 values 7.57+/-0.54 and 8.08+/-0.18, respectively). NECA did not potentiate responses to ATP in either the epididymal half of the vas deferens or the epididymis. 6. These studies are consistent with the action of stable adenosine analogues at prejunctional A1 and postjunctional A1-like adenosine receptors. The prejunctional A1 adenosine receptors only inhibit the electrically-evoked contractions of purinergic origin (an effect predominant in the prostatic half of the vas deferens). At the epididymis, where electrically-evoked contractions are entirely adrenergic, the predominant adenosine receptor agonist effect is a potentiation of alpha1-adrenoceptor-, but not of ATP-induced contractility.  相似文献   

14.
The in vitro effects of endothelin-1 on cerebral veins were studied using cylindrical segments, 5 mm long, from dog pial veins. Isometric responses to endothelin-1 (10(-12)-10(-7) M) and to the endothelin ET(B) receptor agonist, IRL 1620 (Suc-[Glu9,Ala11,15]endothelin-1-(8-21), 10(-12) -10(-7) M), were recorded in veins under control conditions and pretreated with the endothelin ET(A) receptor antagonist, BQ-123 (cyclo-(D-Asp-Pro-D-Val-Leu-D-Trp), 10(-8) -10(-5) M), and the endothelin ETB receptor antagonist, BQ-788 (N-[N-[N-[(2,6-dimethyl-1-piperidinyl)carbonyl]-4-methyl-L-leucyl]-1-(me thoxycarbonyl)-D-tryptophyl]-D-norleucine monosodium, 10(-6) and 10(-5) M). The response to endothelin-1 was also recorded in veins pretreated with the nitric oxide synthesis inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 10(-4) M), or the cyclooxygenase inhibitor, meclofenamate (10(-5) M), and in veins without endothelium or placed in medium without Ca2+ but with EDTA (0.1 mM). In control veins, endothelin-1 produced a concentration-dependent contraction (EC50 = 2.0 x 10(-10) M; maximal contraction = 113 +/- 6 mg) and IRL 1620 induced no effects or a small contraction only with high concentrations (10(-8) - 10(-6) M) (EC50 = 1.5 x 10 (-8) M; maximal contraction = 9 +/- 3 mg). BQ-123 shifted the response to endothelin-1 to the right in a parallel, concentration-dependent way, whereas BQ-788, L-NAME or meclofenamate did not modify the response to endothelin-1. Compared with the control, veins in a medium without Ca2+ had similar EC50 values, but a lower maximal contraction induced by endothelin-1 (57 +/- 10 mg, P < 0.05), and veins without endothelium exhibited similar EC50 values. Thus, endothelin-1 produces marked cerebral venoconstriction that could be mainly mediated by activation of endothelin ETA receptors, may be dependent on extracellular Ca2+, and may be independent of endothelium, nitric oxide and prostanoids.  相似文献   

15.
1. Contractile responses to endothelin-1 (ET-1) and sarafotoxin S6c (S6c) were studied in pulmonary resistance arteries (approximately 320 microm i.d.) from fetal, 0-24 h, 4 day and 7 day rabbits. The effects of the ET(A)-selective antagonist FR139317, the selective ET(B) receptor antagonist BQ-788 and the non-selective ET(A)/ ET(B) receptor antagonist SB 209670, on these responses, were determined. Acetylcholine-induced vasodilation and noradrenaline-evoked contractions were also examined. 2. ET-1 potency was in the following order (pEC50 values): fetal (8.7) = 0-24 h (8.8) = 4 day (8.6) > 7 day (8.0). The order of potency for S6c was 7 days (11.1) = 4 days (10.8) > 0-24 h (9.7) > fetal (8.6). Hence, S6c and ET-1 were equipotent in the fetus but S6c was increasingly more potent than ET-1 with increasing age, being some 1000 times more potent by 7 days. By 7 days, responses to ET-1 were also resistant to both FR139317 and BQ-788. FR139317 inhibited responses to ET-1 in vessels from 0-24 h and 4 day, but not fetal, rabbits (pKb: 6.4 in 4 day rabbits). BQ-788 inhibited responses to ET-1 at all age points except for 7 days (pKb: 6.7 at 0-24 h; 6.2 at 4 days). BQ-788 inhibited responses to S6c at all age points (pKb: 8.5 at 4 days). SB 209670 inhibited responses to ET-1 and S6c at 0-24 h and 4 days (pKb for ET-1: 8.3 and 8.0 respectively; pKb for S6c: 9.2 and 10.2 respectively). 3. Acetylcholine (1 microM) induced vasodilation at all age points (inhibited by 100 microM L-N(omega)-nitroarginine methylester) although the degree of vasodilation was significantly reduced (approximately 75%) at 0-24 h. Noradrenaline induced contraction at all age points except 7 days and its response was significantly enhanced at 0-24 h. 4. Over the first week of life, the potency of S6c increases whilst that to ET-1 decreases suggesting differential development of responses to ET-1 and S6c and heterogeneity of ET(A)- or 'ET(B)-like' receptor-mediated responses. There is no synergism between ET(A) and ET(B) receptors at birth but this is established by 7 days. Immediately after birth rabbit Pulmonary Resistance Arteries are hyperresponsive to ET-1 and noradrenaline but exhibit impaired nitric-oxide dependent vasodilation.  相似文献   

16.
17.
We have previously reported that endothelin-1 (ET-1) stimulates the in vitro secretion of corticosterone and aldosterone from the adrenal gland of the frog Rana ridibunda. The aim of the present study was to investigate the pharmacological profile of the endothelin receptor subtype involved in the corticotropic effect of ET-1. The mixed ET(A)/ET(B) receptor antagonist Ro 47-0203 (10(-5) M) totally blocked the stimulatory effect of ET-1 (5 x 10(-9) M) on corticosterone and aldosterone secretion. The action of ET-1 was also inhibited by the selective ET(A) receptor antagonist BQ-485 (10(-7) M). In contrast, the selective ET(B) receptor antagonist IRL 1038 (10(-6) M) did not affect the response of the frog adrenal gland to ET-1. In addition, the selective ET(B) receptor agonist IRL 1620 (10(-6) M) did not mimic the stimulatory effect of ET-1. The high affinity ET(C) receptor agonist endothelin-3 (ET-3) stimulated corticosteroid secretion, but was 400 times less potent than ET-1. Moreover, the action of ET-3 was also blocked by BQ-485 (10(-7) M). These data indicate that the stimulatory effects of ET-1 and ET-3 on corticosteroid secretion by the frog adrenal gland are mediated by an ET(A) receptor subtype.  相似文献   

18.
While insulin is known to promote vascular smooth muscle (VSM) relaxation, it also enhances endothelin-1 (ET-1) secretion and action in conditions such as NIDDM and hypertension. We examined the effect of insulin pretreatment on intracellular free calcium ([Ca2+]i) responses to ET-1 in cultured aortic smooth muscle cells (ASMCs) isolated from Sprague-Dawley (SD) rats and measured ET(A) receptor characteristics and ET-1-evoked tension responses in aorta obtained from insulin-resistant, hyperinsulinemic Zucker-obese (ZO) and control Zucker-lean (ZL) rats. Pretreatment of rat ASMCs with insulin (10 nmol/l for 24 h) failed to affect basal [Ca2+]i levels but led to a significant increase in peak [Ca2+]i response (1.7-fold; P < 0.01) to ET-1. The responses to IRL-1620 (an ET(B) selective agonist), ANG II, and vasopressin remained unaffected. ET-1-evoked peak [Ca2+]i responses were significantly attenuated by the inclusion of the ET(A) antagonist, BQ123, in both groups. The ET(B) antagonist, BQ788, abolished [Ca2+]i responses to IRL-1620 but failed to affect the exaggerated [Ca2+]i responses to ET-1. Saturation binding studies revealed a twofold increase (P < 0.01) in maximal number of binding sites labeled by 125I-labeled ET-1 in insulin-pretreated cells and no significant differences in sites labeled by 125I-labeled IRL-1620 between control and treatment groups. Northern blot analysis revealed an increase in ET(A) mRNA levels after insulin pretreatment for 20 h, an effect that was blocked by genistein, actinomycin D, and cycloheximide. Maximal tension development to ET-1 was significantly greater (P < 0.01), and microsomal binding studies using [3H]BQ-123 revealed a twofold higher number of ET(A) specific binding sites (P < 0.01) in aorta from ZO rats compared with that of ZL rats. These data suggest that insulin exaggerates ET-1-evoked peak [Ca2+]i responses via increased vascular ET(A) receptor expression, which may contribute to enhanced vasoconstriction observed in hyperinsulinemic states.  相似文献   

19.
Capsaicin-sensitive neurones release a number of neuropeptides, such as substance P, neurokinin A, somatostatin and calcitonin gene-related peptide (CGRP), which exert a number of effects on smooth muscle tissues. Endothelin-1 was thought to potentiate the capsaicin-evoked release of neuropeptides from sensory neurones of the rat. We have investigated the neuromodulatory effects of endothelin-1 on capsaicin-induced release of neurotransmitters from rat vas deferens. Capsaicin and human alpha calcitonin gene-related peptide (human alphaCGRP) reduced the rat vas deferens twitch responses induced by electrical field stimulation. Human beta calcitonin gene-related peptide-(8-37) [human betaCGRP-(8-37)] (1 microM), a selective alphaCGRP receptor antagonist, antagonized the inhibitory effects of both drugs. Endothelin-1 concentration dependently evoked an increase in basal tone of the musculature and potentiated the amplitude of the electrically stimulated responses, blocking inhibitory effects of capsaicin but not of human alphaCGRP. Moreover, endothelin-1 did not markedly change the inhibitory effects of papaverine (0.1-100 microM) or isoprenaline (1 nM-100 microM) on responses to electrical field stimulation. FR 139317 [(N,N-hexamethylene) carbamoyl-Leu-D-Trp(N-Me)-D-2-Pya], a selective endothelin ET(A) receptor antagonist, administered 30 min before endothelin-1 restored the capsaicin effects whereas BQ 788 [Dmpc-gamma-MeLeu-D-Trp-(1-methoxycarbonyl)-D-Nle], a selective endothelin ET(B) receptor antagonist, was completely ineffective. The endothelin-1-induced block of the capsaicin effect was resistant to tetrodotoxin (1 microM) and 30-min pre-treatment with MEN 10.627 (cyclo[(Met-Asp-Trp-Phe-Dap-Leu) cyclo (2beta-5beta)]), a selective tachykinin NK2 receptor antagonist, did not abolish the endothelin-1 effect on the inhibitory response to capsaicin. These results suggest that endothelin-1 selectively inhibits the capsaicin-induced release of neurotransmitters from rat vas deferens and these effects are mediated via endothelin ET(A) receptors but not by tachykinin release.  相似文献   

20.
Modification of blood flow by endothelin-1 (ET-1) was examined in the s.c. HSN fibrosarcoma and compared to normal tissues of anaesthetised CBH/CBi rats. The ET receptor subtypes involved in the response were investigated using the ET(A) and ET(B) receptor antagonists BQ-610 and BQ-788, respectively. Blood flow and vascular resistance were determined using the uptake of radiolabelled iodo-antipyrine (125I-IAP). BQ-610 or BQ-788 was infused for 30 min prior to blood flow determination. ET-1 was administered 15 min into the infusion time. BQ-610 and BQ-788 infused alone did not modify any vascular parameters. Tumour blood flow increased slightly following ET-1, contrasting with most normal tissues, in which blood flow was reduced. Vascular resistance increased in all tissues, including the tumour. Neither antagonist significantly modified the ET-1-induced changes in tumour blood flow or vascular resistance, whereas in the majority of normal tissues BQ-610 attenuated and BQ-788 potentiated the vascular resonse to ET-1. Our results show that the HSN tumour vasculature is only weakly responsive to ET- 1 and antagonism of its effects by BQ-610 and BQ-788. This contrasts with the majority of normal tissues, in which ET- 1 induces an intense vasoconstriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号