首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical reduction of hydrogen peroxide has been studied on uranium dioxide electrodes. The reduction kinetics are found to be influenced by dissolved carbonate/bicarbonate ions. The formation of hydrated UVI species on the electrode surface is avoided in carbonate solutions, allowing H2O2 reduction to proceed at less cathodic potentials than in carbonate-free solutions. At more cathodic potentials, the adsorption of carbonate ions on the active reduction sites inhibits the H2O2 reduction reaction. Over a narrow potential region, the reduction of peroxide is catalyzed by coadsoption of H2O2 and HCO3/CO32−. The pH dependence of the H2O2 reduction reaction appears to be stronger in carbonate solutions than in solutions that do not contain carbonate. This can be attributed to the displacement of inhibiting CO32−/HCO3 adsorbed ions by OH.  相似文献   

2.
Metallic Cu electrode can electrochemically reduce CO2 to CH4, C2H4 and alcohols with high yields as revealed by the present authors. Many workers reported that formation of CH4 and C2H4 rapidly diminishes during electrolysis of CO2 reduction. This paper shows that such deactivation of Cu electrode is reproduced with electrolyte solutions prepared from reagents used by these workers. Deactivated Cu electrodes recovered the electrocatalytic activity for CO2 reduction by anodic polarization at −0.05 V versus she in agreement with the previous reports. Features of the deactivation depend greatly on the individual chemical reagents. Purification of the electrolyte solution by preelectrolysis with a Pt black electrode effectively prevents the deactivation of Cu electrode. Anode stripping voltammetry of Cu electrodes, which were deactivated during electrolysis of CO2 reduction, showed anodic oxidation peaks at ca. −0.1 or −0.56 V versus she. The severer the deactivation of the Cu electrode was, the higher electric charge of the anodic peak was observed. It is presumed that some impurity heavy metal, originally contained in the electrolyte, is deposited on the Cu electrode during the CO2 reduction, poisoning the electrocatalytic activity. On the basis of the potential of the anodic peaks, Fe2+ and Zn2+ are assumed to be the major contaminants, which cause the deactivation of the Cu electrode. Deliberate addition of Fe2+ or Zn2+ to the electrolyte solutions purified by preelectrolysis exactly reproduced the deactivation of a Cu electrode in CO2 reduction. The amount of the deposited Fe or Zn on the electrode was below the monolayer coverage. Electrothermal atomic absorption spectrometry (etaas) showed that Fe originally contained in the electrolyte solution is effectively removed by the preelectrolysis of the solution. Mechanistic difference is discussed between Fe and Zn in the deterioration of the electrocatalytic property of Cu electrode in the CO2 reduction. The concentration of the impurity substances originally contained in the chemical reagents as Fe or Zn is estimated to be far below the standard of the impurity levels guaranteed by the manufacturers. Presence of trimethylamine in the electrolyte solution also severely poisons a Cu electrode in the CO2 reduction. It was concluded that the deactivation of Cu electrode in CO2 reduction is not caused by adsorption of the products or the intermediates produced in CO2 reduction.  相似文献   

3.
The electrochemical reduction of CO2 on a Cu electrode was investigated in aqueous NaHCO3 solution, at low temperature. A divided H-type cell was employed, the catholyte was 0.65 mol dm−3 NaHCO3 aqueous solution and the anolyte was 1.1 mol dm−3 KHCO3 aqueous solution. The temperature during the electrolysis of CO2 was decreased stepwise to 271 K. Methane and formic acid were obtained as the main products. The maximum Faradaic efficiency of methane was 46% at −2.0 V and 271 K. The efficiency of hydrogen formation, a competing reaction of CO2 reduction, was significantly depressed with decreasing temperature. Based on the results of this work, the proposed electrochemical method appears to be a viable means for removing CO2 from the atmosphere and converting it into more valuable chemicals. The synthesis of methane by the electrochemical method might be of practical interest for fuel production and the storage of solar energy.  相似文献   

4.
The effect of halide anions on pyridine-d5 adsorbed on Au(111) electrode has been studied in neutral solutions containing F, Cl, and Br by IRAS and differential capacity measurement. In the NaF solution, N-bonded pyridine increases up to 0.1 V, and a new adsorbed state due to the N-bonded type grows at positive potentials. In the NaCl solution, the N-bonded type grows at all of adsorbed potential except for the appearance of the new adsorbed state at 0.2 V. In the NaBr containing solution, the new adsorbed state is not observed. In the NaCl and NaBr solutions, the total amount of the N-bonded pyridine is suppressed at positive potentials. We propose that the new band is attributed to an ordered layer of the N-bonded pyridine on the Au(111) electrode, and that the formation of the ordered layer is inhibited by the adsorption of Cl and Br.  相似文献   

5.
The electrochemical reduction of high pressure CO2 with a Cu electrode in cold methanol was investigated. A high pressure stainless steel vessel, with a divided H-type glass cell, was employed. The main products from CO2 by the electrochemical reduction were methane, ethylene, carbon monoxide and formic acid. In the electrolysis of high pressure CO2 at low temperature, the reduction products were formed in the order of carbon monoxide, methane, formic acid and ethylene. The best current efficiency of methane was of 20% at −3.0 V. The maximum partial current density for CO2 reduction was approximately 15 mA cm−2. The partial current density ratio of CO2 reduction and hydrogen evolution, i(CO2)/i(H2), was more than 2.6 at potentials more positive than −3.0 V. This work can contribute to the large-scale manufacturing of fuel gases from readily available and inexpensive raw materials, CO2-saturated methanol from industrial absorbers (the Rectisol process).  相似文献   

6.
FTIR spectra are reported of CO2 and CO2/H2 on a silica-supported caesium-doped copper catalyst. Adsorption of CO2 on a “caesium”/silica surface resulted in the formation of CO2 and complexed CO species. Exposure of CO2 to a caesium-doped reduced copper catalyst produced not only these species but also two forms of adsorbed carboxylate giving bands at 1550, 1510, 1365 and 1345 cm−1. Reaction of carboxylate species with hydrogen at 388 K gave formate species on copper and caesium oxide in addition to methoxy groups associated with caesium oxide. Methoxy species were not detected on undoped copper catalyst suggesting that caesium may be a promoter for the methanol synthesis reaction. Methanol decomposition on a caesium-doped copper catalyst produced a small number of formate species on copper and caesium oxide. Methoxy groups on caesium oxide decomposed to CO and H2, and subsequent reaction between CO and adsorbed oxygen resulted in carboxylate formation. Methoxy species located at interfacial sites appeared to exhibit unusual adsorption properties.  相似文献   

7.
Dissociative adsorption and oxidation of glycine on Au(1 1 1) single crystal electrodes in alkaline solutions were studied in the present paper using cyclic voltammetry (CV), in situ FTIR spectroscopy (FTIRS) and electrochemical quartz crystal microbalance (EQCM). In situ FTIRS results demonstrated that adsorbates derived from glycine dissociative adsorption are adsorbed cyanide anions (CNad). The CNad species are stable on Au(1 1 1) surface in the potential region from −0.8 to 0.0 V, and can be oxidized when electrode potential is increased above 0.1 V. The oxidation of CNad releases surface active sites for further glycine oxidation. The products of CNad oxidation were determined by in situ FTIRS as cyanate (OCN), aurous cyanide (AuCN) and aurous di-cyanide (Au(CN)2). The formation of Au(CN)2 may initiate a dissolution of Au(1 1 1) surface atoms, which has been confirmed by a loss of surface mass determined in EQCM studies. It has revealed also that at high electrode potential region glycine may be split on Au(1 1 1) surface to form AuCH2NH2 and AuCOO adsorbates. Further oxidation of these species yielded CO2 and -NH2, and the AuCH2NH2 may be also combined with surface Au oxide to form methylamine. The CO2 species produced in glycine oxidation are all retained in alkaline solutions to generate carbonate (CO32−) and bicarbonate (HCO3) species that were clearly determined by in situ FTIRS studies.  相似文献   

8.
A monolayer of Keggin-type heteropolyanion [SiNi(H2O)W11O39]6− was fabricated by electrodepositing [SiNi(H2O)W11O39]6− on cysteamine modified gold electrode. The monolayer of [SiNi(H2O)W11O39]6− modified gold electrode was characterized by atomic force microscopy (AFM) and electrochemical method. AFM results showed the [SiNi(H2O)W11O39]6− uniformly deposited on the electrode surface and formed a porous monolayer. Cyclic voltammetry exhibited one oxidation peak and two reduction peaks in 1.0 M H2SO4 in the potential range of −0.2 to 0.7 V. The constructed electrode could exist in a large pH (0-7.6) range and showed good catalytic activity towards the reduction of bromate anion (BrO3) and nitrite (NO2), and oxidation of ascorbic acid (AA) in acidic solution. The well catalytic active of the electrode was ascribed to the porous structure of the [SiNi(H2O)W11O39]6 monolayer.  相似文献   

9.
A CuGeO3 nanowire modified glassy carbon electrode was fabricated and characterized by scanning electron microscopy. The results of electrochemical impedance spectroscopy reveal that electron transfer through nanowire film is facile compared with that of bare glassy carbon electrode. The modified electrode exhibited a novel electrocatalytic behavior to the electrochemical reactions of l-cysteine in neutral solution, which was not reported previously. Two pairs of semi-reversible electrochemical peaks were observed and assigned to the processes of oxidation/reduction and adsorption/desorption of cysteine at the modified electrode, respectively. The electrochemical response of cysteine is poor in alkaline condition and is enhanced greatly in acidic solution, suggesting that hydrogen ions participate in the electrochemical oxidation process of cysteine. The intensities of two anodic peaks varied linearly with the concentration of cysteine in the range of 1 × 10−6 to 1 × 10−3 mol L−1, which make it possible to sensitive detection of cysteine with the CuGeO3 nanowire modified electrode. Furthermore, the modified electrode exhibited good reproducibility and stability.  相似文献   

10.
The influence of NO2 on the corrosion of Ni in acid phosphate solutions were analysed by means of potentiodynamic scans and impedance spectroscopy under electrode rotation. The complex nitrite reduction reaction involves adsorbed intermediates which interfere with the surface process occurring during the active dissolution and passivation of Ni. Near the corrosion potential, the reduction of NO2 follows a Tafel’s behaviour independent from nitrite concentration and electrode rotation speed, denoting a surface-controlling step. Without NO2, the adsorption of H predominates in the cathodic polarisations. The adsorption of NO2 near the corrosion potential has several consequences: (i) it brings about a lower surface coverage of NiOH decreasing the rate of Ni active dissolution and (ii) its preferential adsorption against that of passivating species, such as NiOH and Ni(OH)2, hinders the formation of the pre-passive layer at low pH-values increasing the passivation current.  相似文献   

11.
Y Hori  H Ito  K Okano  K Nagasu  S Sato 《Electrochimica acta》2003,48(18):2651-2657
Silver-coated ion exchange membrane electrodes (solid polymer electrolyte, SPE) were prepared by electroless deposition of silver onto ion exchange membranes. The SPE electrodes were used for carbon dioxide (CO2) reduction with 0.2 M K2SO4 as the electrolyte with a platinum plate (Pt) for the counterelectrode. In an SPE electrode system prepared from a cation exchange membrane (CEM), the surface of the SPE was partly ruptured during CO2 reduction, and the reaction was rapidly suppressed. SPE electrodes made of an anion exchange membrane (SPE/AEM) sustained reduction of CO2 to CO for more than 2 h, whereas, the electrode potential shifted negatively during the electrolysis. The reaction is controlled by the diffusion of CO2 through the metal layer of the SPE electrode at high current density. Ultrasonic radiation, applied to the preparation of SPE/AEM, was effective to improve the electrode properties, enhancing the electrolysis current of CO2 reduction. Observation by a scanning electron microscope (SEM) showed that the electrode metal layer became more porous by the ultrasonic radiation treatment. The partial current density of CO2 reduction by SPE/AEM amounted to 60 mA cm−2, i.e. three times the upper limit of the conventional electrolysis by a plate electrode. Application of SPE device may contribute to an advancement of CO2 fixation at ambient temperature and pressure.  相似文献   

12.
The adsorption of asparagine (Asn) on a gold electrode from 0.1 M LiClO4 aqueous solutions was investigated. The experimental data obtained from ac impedance measurements were analyzed to determine the dependence of adsorption parameters, i.e. the standard Gibbs energy of adsorption (ΔG0), maximal value of surface excess concentration (Γmax) of Asn and parameter of interactions in the adsorbed layer (A) on the electrode potential. The relatively large value of Gibbs energy of adsorption (∼ −47 kJ mol−1) gives the evidence of a very strong adsorption of Asn at the polycrystalline Au electrode. The comparison of the adsorption behavior of Asn at the air/solution and the Au/solution interfaces points out to the significant electronic interactions of adsorbate molecules with the Au electrode, since the adsorption of Asn on a free surface (from the same solutions) is very week. The analysis of the electrochemical data as well as the infrared reflection absorption spectroscopy (IRAS) results reveal that Asn molecules are anchored to the Au surface through oxygen atoms of the carboxylate group COO and through the amide carbonyl group.  相似文献   

13.
Most of the research published in electrochemical CO2 reduction has been reported for half-cells, with little consideration of the overall system. However, it is necessary to consider the eventual involvement of full cells. We conducted CO2 reduction and water oxidation in a CO2-reducing full cell with larger geometric surface area (2×2 cm2) and with a relatively small inter-electrode gap (1-2 mm) in order to minimize ohmic losses. The result was an ca. 1:1 CO/H2 (v/v) gas ratio at a current density of 10 mA cm−2 and a cell voltage of 3.05 V, producing O2 at the counter electrode. Based on an enthalpic voltage of 1.36 V, this constitutes an overall energy efficiency of 44.6%.  相似文献   

14.
Kinetics and mechanism of nitrate ion reduction on Pt(1 1 1) and Cu-modified Pt(1 1 1) electrodes have been studied by means of cyclic voltammetry, potentiostatic current transient technique and in situ FTIRS in solutions of perchloric and sulphuric acids to elucidate the role of the background anion. Modification of platinum surface with copper adatoms or small amount of 3D-Cu crystallites was performed using potential cycling between 0.05 and 0.3 V in solutions with low concentration of copper ions, this allowed us to vary coverage θCu smoothly. Following desorption of copper during the potential sweep from 0.3 to 1.0 V allowed us to estimate actual coverage of Pt surface with Cu adatoms. Another manner of the modification was also applied: copper was electrochemically deposited at several constant potentials in solutions containing 10−5 or 10−4 M Cu2+ and 5 mM NaNO3 with registration of current transients of copper deposition and nitrate reduction.It has been found that nitrate reduction at the Pt(1 1 1) surface modified by copper adatoms in sulphuric acid solutions is hindered as compared to pure platinum due to induced sulphate adsorption at E < 0.3 V. Sulphate blocks the adsorption sites on the platinum surface and/or islands of epitaxial Cu(1 × 1) monolayer thus hindering the adsorption of nitrate anions and their reduction. The extent of inhibition weakly depends on the copper adatom coverage. Deposition of a small amount of bulk copper does not affect noticeably the rate of nitrate reduction.Nitrate reduction on copper-modified Pt(1 1 1) electrodes in perchloric acid solutions occurs much faster as compared to pure platinum. The steady-state currents are higher by 4 and 2 orders of magnitude at the potentials of 0.12 and 0.3 V, respectively. The catalytic effect of copper adatoms is largely caused by the facilitation of nitrate adsorption on the platinum surface near Cuad and/or on the islands of the Cu(1 × 1) monolayer (induced nitrate adsorption).Hydrogen adatoms block the adsorption sites on platinum for NO3 anion adsorption and inhibit reactions of nitrate reduction even at moderate surface coverage.The products of nitrate reduction in sulphuric and perchloric acids are essentially the same (NO and ammonia) irrespective of the presence or absence of Cu on the platinum surface.  相似文献   

15.
The electrochemical and adsorptive behavior of formaldehyde at Pt electrodes in acidic media was investigated using cyclic voltammetry (CV) and electrochemical quartz crystal microbalance (EQCM) techniques. All chemical and electrochemical steps related to formaldehyde oxidation (e.g. bulk adsorption and oxidation, CO (sub)monolayer adsorption and oxidation and electrons per Pt site) were analyzed. All the mass and charge density data in this paper are referred to the real surface area. The charge density associated with formaldehyde oxidation was close to 420 μC cm−2, which is related to the oxidation of approximately one CO monolayer with two electrons transferred. For CO adsorption the experimental mass value was 50 ng cm−2. In the region of CO oxidation the analysis of mass and charge variations indicates simultaneous CO oxidation, anion and water adsorption and CO readsorption. The mechanism was confirmed by CO and CO2 flux calculations. From the analysis of the mass-charge ratio and species flux it was concluded that CO, an intermediate produced during formaldehyde oxidation, is adsorbed at the Pt surface and the main contribution to the mass increase during formaldehyde oxidation is CO readsorption, and water adsorption.  相似文献   

16.
The ac response of polyaniline thin films on platinum electrodes was measured at different dc potentials during the CO2 reduction in methanol/LiClO4 electrolyte with a small amount of 0.5 M H2SO4. The complex capacitance curves were simulated and the data obtained were used to calculate kinetic parameters, based on the assumption that the thermodynamic potential E0 is in the region of −0.2-−0.1 V versus saturated calomel electrode (SCE). With E0=−0.2 V versus SCE and β=0.6, a j0 value of ca. 10−4 A cm−2 was found for the electroreduction of CO2 on the polyaniline electrode.  相似文献   

17.
Although the electrochemical reduction of CO2 at a copper electrode produces hydrocarbons, the activity for the conversion of CO2 is significantly reduced after several tens of minutes by the deposition of poisoning species on the electrode. In order to solve the poisoning species problem, the electrochemical reduction of CO2 was carried out using a copper electrode in the pulse electrolysis mode by anodic as well as cathodic polarization. The anodic polarization intervals suppressed the deposition of the poisoning species on the electrode, and the amount of two hydrocarbons produced, CH4 and C2H6, decreased only slightly even after one hour. By choosing the appropriate anodic potential and time duration the selectivity for C2H6 formation was significantly enhanced. The enhancement was found to be due to the copper oxide formed on the copper electrode. The selectivity was further improved when the electrochemical reduction was carried out using a copper oxide electrode. The highest efficiency of about 28% was obtained at −3.15 V.  相似文献   

18.
The thermodynamics of the so-called perfectly polarizable electrode was employed to analyze the total charge densities for a nearly defect-free Pt(1 1 1) electrode in a series of NaH2PO4 solutions with an excess of inert electrolyte (0.1 M HClO4) at constant ionic strength and pH. Thermodynamic analysis using both electrode potential and charge density as independent electrical variables is described. The Gibbs excess, Gibbs energy of adsorption and charge numbers both at constant electrode potential and constant chemical potential for anion adsorption at the Pt(1 1 1) surface have been determined. The calculated electrosorption valencies and charge numbers at constant chemical potential are close to two electrons per adsorbed anion, suggesting that in the absence of co-adsorbed species, HPO42− is the predominant adsorbed species. The maximum Gibbs excess of adsorbed hydrogenphosphate attains a value of ≈3.2 × 1014 ions cm−2 which corresponds to a coverage of ≈0.22 ML.  相似文献   

19.
Calcium-carbonate powders were coprecipitated with Al3+ and then decomposed in air and/or under a CO2 flux between 590 °C and 1150 °C. The data were analysed using a consecutive-decomposition-dilatometer method and the kinetic results were discussed according to the microstructure analysis done by N2 adsorption isotherms (78 K), SEM and FT-IR measurements. Below 1000 °C, CaCO3 particle thermal-decomposition was pseudomorphic, resulting in the formation of a CaO grain porous network. When the CaO grains were formed, the Al3+ diffused among them, producing AlO4 groups that promoted the CaO grain coarsening and reduced O2− surface sites available to CO2 adsorbed molecules to form CO32−. In pure CaO, CO32− diffused through the grain boundary, enhancing Ca2+ and O2− mobility; AlO4 groups reduced CO32− penetration and CaO sintering rate. Above 1000 °C, the sintering rate of the doped samples exceeded that of the undoped, likely because of Al3+ diffusion in CaO and viscous flow.  相似文献   

20.
Modifying electrode surfaces on the molecule scale allow developing new electrochemical biosensors. A new strategy for the immobilization of calf thymus DNA on the surface of gold nanoparticles which are co-immobilized at a gold electrode through 4,4-bis(methanethiol) biphenyl (MTP) molecule by assembly process is demonstrated. The DNA modified electrode was incubated in Co(phen)33+ solution of an aqueous buffer or an acetonitrile (AN) solution, then it was rinsed and placed in a Co(phen)33+ free buffer solution or AN solution, followed by cyclic voltammetric experiments. Clear redox peaks of Co(phen)33+ were observed both in an aqueous and AN solutions. The concentration of supporting electrolyte on electrochemical behavior was discussed. It was found that the surface coverage value of DNA molecules on modified gold nanoparticle and the redox current of adsorbed Co(phen)33+ were decrease with increasing the size of gold nanoparticles (6, 25, 42, 73, and 93 nm). In aqueous solution, the electron transfer rate constant of Co(phen)33+/2+ redox couple became slow with increasing the diameter of gold nanoparticle, and the speed almost had nothing to do with the diameter in nonaqueous solution. The surface concentration of Co(phen)33+ adsorption on DNA modified electrode decreased and rate constant of adsorption kinetics increased with increasing the interactive temperature. In AN solution, the electrostatic interaction between DNA and Co(phen)33+/2+ was greatly reduced, however, compare with in aqueous solution the interaction between DNA and reduced form of Co(phen)32+ was more strongly than oxidized form Co(phen)33+. The surface concentration of Co(phen)33+ adsorption on DNA modified electrode reach maximum value when the interactive temperature about 20 °C, and rate constant of adsorption kinetics nearly independent of the interactive temperature. The results show that the DNA can adsorb on the modified electrode firmly and the Co(phen)33+/2+ adsorbed on DNA give good electrochemical response both in aqueous and nonaqueous solutions. It was confirmed that the DNA modified electrode can be applied in a nonaqueous system and the modified electrode can be used to investigate the interaction between DNA and electroactive species both in aqueous and nonaqueous systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号