首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Arbuscular mycorrhizal fungi (AMF) community composition and species richness are affected by several factors including soil attributes and plant host. In this paper we tested the hypothesis that conversion of tropical Amazon forest to pasture changes taxonomic composition of AMF community but not community species abundance and richness. Soil samples were obtained in 300 m × 300 m plots from forest (n = 11) and pasture (n = 13) and fungal spores extracted, counted and identified. A total of 36 species were recovered from both systems, with 83% of them pertaining to Acaulosporaceae and Glomeraceae. Only 12 species were shared between systems and spore abundance of the majority of fungal species did not differ between pasture and forest. Spore abundance was significantly higher in pasture compared to forest but both systems did not differ on mean species richness, Shannon diversity and Pielou equitability. Species abundance distribution depicted by species rank log abundance plots was not statistically different between both systems. We concluded that conversion of pristine tropical forest to pasture influences the taxonomic composition of AMF communities while not affecting species richness and abundance distribution.  相似文献   

2.
Current theory expects that fungi, on the one hand, are spatially ubiquitous but, on the other, are more susceptible than bacteria to disturbance such as land use change due to dispersal limitations. This study examined the relative importance of location and land use effects in determining soil fungal community composition in south-eastern Australia. We use terminal restriction fragment length polymorphism (T-RFLP; primer pair ITS1-F–ITS4) and multivariate statistical methods (NMDS ordinations, ANOSIM tests) to compare relative similarities of soil fungal communities from nine sites encompassing three locations (ca 50–200 km apart) and four land uses (native eucalypt forest, Pinus radiata plantation, Eucalyptus globulus plantation, and unimproved pasture). Location effects were generally weak (e.g. ANOSIM test statistic R  0.49) and were, in part, attributed to minor differences in soil texture. By contrast, we found clear and consistent evidence of land use effects on soil fungal community composition (R  0.95). That is, soils from sites of the same land use grouped together in NMDS ordinations of fungal composition despite geographic separations of up to ca 175 km (native eucalypt forests) and 215 km (P. radiata plantations). In addition, different land uses from the same location were clearly separate in NMDS ordinations, despite, in one case, being just 180 m apart and having similar land use histories (i.e. P. radiata versus E. globulus plantation both established on pasture in the previous decade). Given negligible management of all sites beyond the early establishment phase, we attribute much of the land use effects to changes in dominant plant species based on consistent evidence elsewhere of strong specificity in pine and eucalypt mycorrhizal associations. In addition, weak to moderate correlations between soil fungal community composition and soil chemical variables (e.g. Spearman rank correlation coefficients for individual variables of 0.08–0.32), indicated a minor contributing role of vegetation-mediated changes in litter and soil chemistry. Our data provide evidence of considerable plasticity in soil fungal community composition over time spans as short as 6–11 years. This suggests that – at least within geographic zones characterised by more-or-less contiguous forest cover – soil fungal community composition depends most on availability of suitable habitat because dispersal propagules are readily available for colonisation after land use change.  相似文献   

3.
Differences in the bacterial communities of soils caused by disturbances and land management were identified in rRNA gene libraries prepared from conventional tilled (CT) and no tilled (NT) cropland, a successional forest after 30 y of regrowth (NF) and an old forest of >65 y (OF) at Horseshoe Bend, in the southern Piedmont of Georgia (USA). Libraries were also prepared from forests after 80 y of regrowth at the Coweeta Long Term Ecological Research site (CWT) in the Southern Appalachians of western North Carolina (USA). The composition of the bacterial communities in cropland soils differed from those of the Horseshoe Bend OF and CWT forest soils, and many of the most abundant OTUs were different. Likewise, the diversity of bacterial communities from forest was less than that from cropland. The lower diversity in forest soils was attributed to the presence of a few, very abundant taxa in forest soils that were of reduced abundance or absent in cropland soils. After 30 y of regrowth, the composition of the bacterial soil community of the NF was similar to that of the OF, but the diversity was greater. These results suggested that the bacterial community of soil changes slowly within the time scale of these studies. In contrast, the composition and diversity of the bacterial communities in the Horseshoe Bend OF and Coweeta soils were very similar. Thus, this forest soil bacterial community was widely distributed in spite of the differences in soil properties, vegetation, and climate as well as resilient to disturbances of the above ground vegetation.  相似文献   

4.
Situated in the Atlantic Ocean, Madeira is a within-plate volcanic island, approximately 600 km northwest of the Western African coast. Cloud cover formed mainly of orographic origin persists on Madeira for more than 200 days per year between 800 m and 1600 m altitude. Since vegetation occupies 2/3 of the island's surface, fog precipitation, which occurs when fog droplets are filtered by the forest canopy and coalesce on the vegetation surfaces to form larger droplets that drip to the forest floor, is an important hydrological input. Rainfall interception and fog precipitation data were collected between 1996 and 2005 in the natural forests of Madeira. Six throughfall gauges were placed under the canopy of three different types of forest: high altitude tree heath forest (1580 m), secondary tree heath forest (1385 m) and humid laurisilva forest (1050 m). Fog precipitation is higher under high altitude heath forest (average canopy interception was ?225% of gross precipitation) and dependent both on altitude and vegetation type, due to different tree architecture and leaf shape. Although results are conservative estimates of fog precipitation, they point towards the importance of fog-water as a source of groundwater recharge in the water balance of the main forest ecosystems of Madeira.  相似文献   

5.
Building soil structure in agroecosystems is important because it governs soil functions such as air and water movement, soil C stabilization, nutrient availability, and root system development. This study examined, under laboratory conditions, effects of organic amendments comprised of differing proportions of labile and semi-labile C on microbial community structure and macroaggregate formation in three variously textured soils where native structure was destroyed. Three amendment treatments were imposed (in order of increasing C lability): vegetable compost, dairy manure, hairy vetch (Vicia villosa Roth). Formation of water stable macroaggregates and changes in microbial community structure were evaluated over 82 days. Regardless of soil type, formation of large macroaggregates (LMA, >2000 μm diameter) was highest in soils amended with vetch, followed by manure, non-amended control, and compost. Vetch and manure had greater microbially available C and caused an increase in fungal biomarkers in all soils. Regression analysis indicated that LMA formation was most strongly related to the relative abundance of the fungal fatty acid methyl ester (FAME) 18:2ω6c (r = 0.55, p < 0.001), fungal ergosterol (r = 0.58, p < 0.001), and microbial biomass (r = 0.57, p < 0.001). Non-metric multidimensional scaling (NMS) ordination of FAME profiles revealed that vetch and manure drove shifts toward fungal-dominated soil microbial communities and greater LMA formation in these soils. This study demonstrated that, due to their greater amounts of microbially available C, vetch or manure inputs can be used to promote fungal proliferation in order to maintain or improve soil structure.  相似文献   

6.
We studied the relationship between plant and soil animal communities by geostatistical analysis in a piedmont forest close to Novorossiysk (Southern Russia). Vegetation on the slope of a hill was an oak-ash-hornbeam forest, while the vegetation on the foot of the hill was a maple-ash-hornbeam forest. Two plots were studied each including both slope and foot habitats. On every plot samples collected formed a grid of 10 × 5 units with a 5 m distance between them. Soil macroinvertebrates were hand-sorted from the samples, and several soil parameters (soil, pebble, and litter mass, soil moisture) were measured.The analysis did not reveal coincidence between the boundaries of plant and soil animal communities on the bend of the hill. Soil animal communities of the plots were dominated by woodlice, diplopods, and insect larvae, reaching an abundance of 680–990 individuals m2 throughout the plots. Number of taxonomic groups per sample and overall animal abundance in the bend were the highest in both plots, whilst these parameters on the slope were the lowest. Variograms and maps of spatial distribution indicated that the boundary between soil animal communities was situated further up on the slope than the vegetation boundary. The size of the animal community was smaller than the size of plots sampled, what probably explained the lack of coincidence between the boundaries. There was a significant correlation between distribution of litter mass and parameters of soil animal communities, which was modulated by depth of soil layer and soil moisture. Soil parameters were more important for explaining boundaries between soil animal communities than plant communities in the forest considered.  相似文献   

7.
Fragmentation of forest ecosystems increases the proportion of edge habitat and is accompanied by a change in plant species composition. The recreational use of urban forests leads to decreased vegetation cover and the formation of paths, and thus, to fragmentation at small scales. We studied the impacts of forest and path edge effects on the soil microbial community structure (by using the phospholipid fatty acid (PLFA) method) and microbial activity (measured as basal respiration) in 34 mesic boreal urban forest fragments in Finland. We sampled the humus layer 1) from the forest edge into the interior (0–80 m), and 2) at different distances from paths. Microbial community structure was only slightly affected by the forest edge but differences were found between distances of 0–10 m and over 50 m from the edge. These changes correlated with changes in soil pH. Although changes in the microbial community structure were not pronounced, microbial biomass and activity were 30–45% lower at the first 20 m into the forest fragments, due to a low moisture content of the humus near the edge. The decreased microbial activity detected at forest edges implies decreased litter decomposition rates, and thus, a change in ecosystem nutrient cycling. The microbial community structure differed between paths and surrounding areas and correlated with changes in soil pH. Paths also supported approximately 25–30% higher microbial biomass with a transition zone of at least 1 m from the path edge. Path associated disturbances (mainly alterations in vegetation and soil pH) were reflected in the soil microbial community structure up to 1.5 m from the paths.  相似文献   

8.
In Costa Rica, the Maquenque National Wildlife Refuge (MNWLR) contains a unique habitat gradient ranging from primary old growth forests, grasslands, pastures, to various ages of secondary forests. Within these primary old growth forests are extremely dense naturally occurring Bromelia pinguin (Bromeliaceae) patches that often grow with densities up to 2 plants per square meter. A previous study found that anti-fungal activity of this particular plant appears to be altering the fungal community in soils adjacent to these plants. No work has been previously conducted on the possible effects of this plant community on soil faunal communities and if seasonality contributes to changes in soil invertebrate populations along a moisture gradient. Thus, a study was conducted to assess the effects of this specialized plant community on soil invertebrates with respect to season, and if these changes in soil fauna guild structure could prove to be valid candidates as indicators of ecosystem condition with changes in precipitation. In addition, a meta-analysis was done to determine how the bromeliad-associated soil invertebrate communities differ from those in adjacent primary forest soils. Therefore, comparisons were determined from previous primary forest soil invertebrate environmental DNA (eDNA) to the current wet season bromeliad soil invertebrate eDNA. Roche 454 pyro-sequencing was conducted on the 650 bp fragment of the cytochrome oxidase subunit I (COI) gene of invertebrates to obtain and characterize soil invertebrate sequence composition. To determine relationships among soil fauna guilds across seasons, relative abundance of the sequences were calculated, and used in conjunction with EcoSim niche overlap and co-occurrence values. From the bromeliad seasonal soil fauna eDNA study, it appears certain invertebrate guilds are driven by moisture as indicated by fluctuations in relative abundance of each invertebrate guild across seasons in bromeliad patch soils, as well as indicated by EcoSim niche overlap values. In particular, Guilds 1, 4, and 5, should warrant further investigation as indicators of habitat condition. The meta-analysis showed that a naturally occurring modified environment (the bromeliad patches), can result in differences in relative abundance and partitioning of a limited resource between invertebrate guild structure. Those guilds associated with microbivorous and complex decomposition activities (i.e. Guilds 3 and 4), are more abundant in primary forest soils than bromeliad patch soils and could potentially used for bioindicators of habitat perturbations.  相似文献   

9.
《Applied soil ecology》2007,35(2-3):258-265
We examined the relationship between soil respiration rate and environmental determinants in three types of tropical forest ecosystem—primary forest, secondary forest, and an oil palm plantation in the Pasoh Forest Reserve on the Malaysian Peninsula. In August 2000, the soil respiration rate and environmental factors (soil temperature, soil water content, soil C and N contents, biomass of fine roots, and microbes) were measured at 12–16 points in research quadrats. Soil respiration rates were 831 ± 480, 1104 ± 995, 838 ± 143, 576 ± 374, and 966 ± 578 (mean ± S.D.) mg CO2 m−2 h−1 in the primary forest canopy and gap site, secondary forest canopy and gap site, and oil palm plantation, respectively. Although the mean soil respiration rates in the three forest ecosystems did not differ significantly, differences were evident in the environmental factors affecting the soil respiration. The major causes of spatial variation in soil respiration were fine root biomass, soil water content, and soil C content in the primary and secondary forests and oil palm plantation, respectively.  相似文献   

10.
The forest–savanna transition zone is widely distributed on nutrient-poor oxisols in Central Africa. To reveal and compare the nutrient cycle in relation to soil microbes for forest and savanna vegetation in this area, we evaluated seasonal fluctuations in microbial biomass carbon (MBC), nitrogen (MBN), and phosphorus (MBP) for 13 months as well as soil moisture, temperature, soil pH levels, and nutrients for both vegetation types in eastern Cameroon. Soil pH was significantly lower in forest (4.3) than in savanna (5.6), and soil N availability was greater in forest (87.1 mg N kg−1 soil) than in savanna (32.9 mg N kg−1 soil). We found a significant positive correlation between soil moisture and MBP in forest, indicating the importance of organic P mineralization for MBP, whereas in savanna, we found a significant positive correlation between soil N availability and MBP, indicating N limitation for MBP. These results suggest that for soil microbes, forest is an N-saturated and P-limited ecosystem, whereas savanna is an N-limited ecosystem. Additionally, we observed a significantly lower MBN and larger MB C:N ratio in forest (50.7 mg N kg−1 soil and 8.6, respectively) than in savanna (60.0 mg N kg−1 soil and 6.5, respectively) during the experimental period, despite the rich soil N condition in forest. This may be due to the significantly lower soil pH in forest, which influences the different soil microbial communities (fungi-to-bacteria ratio) in forest versus savanna, and therefore, our results indicate that, in terms of microbial N dynamics, soil pH rather than soil substrate conditions controls the soil microbial communities in this area. Further studies should be focused on soil microbial community, such as PLFA, which was not evaluated in the present study.  相似文献   

11.
《Applied soil ecology》2003,22(3):205-210
We examined the response of the temperature coefficient (Q10) for soil respiration rate to changes in environmental temperature through a laboratory incubation experiment. Soil samples were collected from three climatic areas: arctic (Svalbard, Norway), temperate (Tsukuba, Japan) and tropical (Pasoh, Malaysia). The arctic and temperate soils were incubated at 8 °C (control), 12 °C (4 °C warming) and 16 °C (8 °C warming) for 17 days. The tropical soil was incubated at 16 °C (8 °C cooling), 24 °C (control) and 32 °C (8 °C warming). Before and after the incubation experiment, the temperature dependence of soil microbial respiration was measured using an open-airflow method with IRGA by changing the temperature in a water bath. The initial Q10 before the incubation experiment was larger in the soils from higher latitudes: 3.4 in the arctic soil, 2.9 in the temperate soil, and 2.1 in the tropical soil. The response of the microbial respiration rate to change in temperature differed among the three soil types. The temperature dependence of respiration rate in the arctic soil did not change in response to warming by 4 and 8 °C with a Q10 of about 3. On the other hand, the Q10 in the temperate soil decreased with increasing incubation temperature: from 2.8 in soils incubated at 8 °C to 2.5 at 12 °C and 2.0 at 16 °C. In the tropical soil, the Q10 was not changed even by the 8 °C warming with a value of 2.1, whereas the Q10 was increased from 2.1 to 2.7 by the 8 °C cooling. These results suggest that the response of microbial respiration to climatic warming may differ between soils from different latitudes.  相似文献   

12.
The response of the soil food web structure to soil quality changes during long-term anthropogenic disturbance due to farming practices has not been well studied. We evaluated the effects of three tillage systems: moldboard plow/rotary harrow (MP), rotary cultivator (RC), and no-tillage (NT), three winter cover-crop types (fallow, FL; rye, RY; and hairy vetch, HV), and two nitrogen fertilization rates (0 and 100 kg N ha−1 for upland rice, and 0 and 20 kg N ha−1 for soybean production) on changes in nematode community structure. Sixty-nine taxa were counted, total nematode abundance (ALL), bacterial feeders (BAC), predators (PRD), omnivores (OMN), and obligatory root feeders (ORF) were more abundant in NT than in MP and RC, but fungal feeders and facultative root feeders (FFR) were more abundant in RC than in NT and MP. Cover crop also influenced nematode community structure; rye and hairy vetch were always higher in ALL, BAC, FFR, ORF, and OMN than fallow. Seasonal changes in nematode community structure were also significant; in particular, as soil carbon increased, nematode abundance also increased. The relationship between nematode indices and soil carbon was significant only in NT, but not in MP and RC. In NT, with increasing soil carbon, enrichment index and structure index (SI) were positive and significant and channel index was negative. Bulk density was significantly negatively correlated with FFR and ORF. Seasonal difference in nematode community between summer and autumn was larger in an upland rice rotation than in a soybean rotation. Over the nine-year experiment, SI increased not only in NT but also in MP and RC, suggesting that repeated similar tillage inversions in agroecosystems may develop nematode community structures adapted to specific soil environmental conditions. Because NT showed the highest values of both SI and soil carbon, the increase of soil carbon in NT is expected to have a great impact on developing a more diverse nematode community structure.  相似文献   

13.
We investigated microbial biomass, fungal biomass and microbial community structure at three altitudes (1000, 2000 and 3000 m) and in two soil layers [L/F layer (Layer I) and underlying H/Ah layer (Layer II)] of tropical mountain rain forests in southern Ecuador. Basal respiration, microbial biomass and concentration of ergosterol generally declined from Layer I to Layer II and peaked at 2000 m. Compared to temperate forest ecosystems microbial biomass and ergosterol concentrations were generally low. Patterns in phospholipid fatty acids indicated that the composition of microbial communities markedly changed from Layer I to Layer II. These differences between layers decreased with increasing altitude. The concentration of the arbuscular mycorrhizal fungal marker PLFA 16:1ω5c decreased with altitude in Layer I but increased in Layer II. The fungal-to-bacterial ratio increased with altitude and was higher in Layer I than in Layer II. Presumably, low microbial biomass in soils of tropical forest ecosystems is due to high temperature associated with high respiration but also low litter quality, with the latter declining with altitude. These conclusions are supported by the fact that at higher altitude the microbial community changed from a bacterial-dominated to a fungal-dominated system. CCA showed that microbial biomass correlated closely with density of a number of putatively bacterial feeding testate amoeba species including Corythion dubium Taranek, 1871, Euglypha cristata Leidy, 1879, Trigonopyxis arcula Penard, 1912, Tracheleuglypha dentata Deflandre, 1928 and Trinema lineare Penard, 1890. Ergosterol concentrations, but not the PLFA 18:2ω6c, strongly correlated with the putatively fungal feeding species Phryganella acropodia (Hertwig, Lesser, 1874) Hopkinson, 1909. Generally, parallel to microbial biomass and ergosterol concentrations the density of testate amoebae peaked at 2000 m. However, compared to microbial parameters changes in testate amoebae communities between two layers were less pronounced. The data suggest that density and community structure of testate amoebae are driven by the availability of food resources (bacteria and fungi) which at high altitude decrease with increasing moisture and decreasing pH.  相似文献   

14.
In gold mining regions, the risk of soil pollution by mercury is a major environmental hazard, especially in tropical areas where soil microflora plays a major part in soil functioning, major bio-geochemical cycles and carbon turn-over. The impact of mercury pollution on soil microflora should thus be carefully assessed in such environments while taking into consideration the specificities of tropical soils. The aim of this study was to compare the effects of mercury (0, 1 and 20 μg of inorganic mercury per gram of soil) on the functional diversity and genetic structure of microbial communities in a tropical soil. We investigated the effects of mercury on tropical soil microflora using soil microcosms spiked with mercury and incubated at 28 °C for 1 month. Microcosm flora, its biomass and its activity, as well as its functional and genetic structure, were followed by cultural methods, measures of respiration, ECOLOG plates, and DGGE (denaturing gel gradient electrophoresis), respectively. Fate of total and bioavailable mercury was estimated by CVAFS (cold vapor atomic fluorescence spectrometry). Results obtained for the microcosms enriched with only 1 μg g?1 mercury were indistinguishable from controls. Conversely, in the presence of high mercury contents (20 μg g(1), an immediate effect was measured on soil respiration, functional diversity (ECOLOG plates) and genetic structure (DGGE), although no significant effect was observed on plate counts or microbial biomass. In addition, whereas microbial activities (respiration and functional diversity) rapidly regained control values, a lasting effect of the high mercury concentration was observed on the genetic structure of the soil microbial community. These modifications took place during the first week of incubation when total mercury concentration was declining and bioavailable mercury was at its highest.This multiple approach study is one of the first attempts at investigating the effects of mercury on soil microbial communities in tropical soils. Our results demonstrate that in the tropical soil under study, mercury affects the soil microbial communities in a different manner than was previously reported in temperate soils. Furthermore, mercury toxicity on soil microbes may be modulated by typical tropical soil characteristics.  相似文献   

15.
《Applied soil ecology》2011,48(3):217-220
We tested whether bacterial communities of subarctic heath soil are adapted to elevated temperature after experimental warming by open-top greenhouses for 7 or 17 years. The long-term warming by 1–2 °C significantly decreased bacterial community growth, by 28% and 73% after 7 and 17 years, respectively. The decrease was most likely due to decreased availability of labile substrate under warming. However, we found no evidence for temperature adaptation of soil bacterial communities. The optimum temperature for bacterial growth was on average 25 °C, and the apparent minimum temperature for growth between −7.3 and −6.1 °C, and both were unaffected by warming.  相似文献   

16.
The body size of univoltine insect species generally decreases with increasing altitude or latitude. This pattern may have arisen from adaptations to multiple factors that potentially affect body-size variation, such as temperature, food, and interspecific interactions. We examined altitudinal variations in life history and body size, and their relationships to temperature and food resources in two ground beetle species of the genus Carabus (subgenus Ohomopterus; C. tosanus and C. japonicus) in a mountainous area (altitude 860–1730 m) of Shikoku Island, Japan. Larvae of these species are specialist predators of earthworms. The body size of C. tosanus decreased with an increase in altitude. Carabus japonicus, which is much smaller than C. tosanus, exhibited similar sizes across altitudes, although it was not abundant at high altitudes. Available cumulative temperatures for larval development were limited at higher altitudes, and C. tosanus started reproducing 1 month earlier at higher than at lower altitudes. Earthworms (larval food) were less abundant at higher than at lower altitudes. This may imply that food resources also restrict the optimal body size of C. tosanus at higher altitudes.  相似文献   

17.
We used a combination of sampling and statistical approaches to investigate the relative influence of metals, soil acidity, and organic matter on a suite of analogous plant and microbial community parameters in floodplain soils contaminated by mine wastes in the early twentieth century. We compared the sensitivity of plant and microbial communities to environmental variables and to one another using constrained ordination analyses. Environmental factors accounted for a larger percentage of the total variance in microbial communities (56.2%) than plant communities (22.0%). We also investigated biological and geochemical changes that occurred along a short transect (64 cm) that spanned a transition from productive grassland to an area of barren wasteland representing a total functional collapse of the grassland/soil ecosystem. Along this small-scale transect we quantified geochemical parameters and biological parameters in two soil layers, an upper layer (0–10 cm) and a lower layer (10–20 cm). Results from the short transect indicated that soil respiration was not a strong indicator of underlying metal concentrations, but soil acidity was correlated in the upper and lower layers. PLFA profiles changed with distance along the gradient in the upper, but not the lower layer. Implications for remediation of contaminated floodplain soils are discussed.  相似文献   

18.
Although understory vegetation is known to play an important role in driving the processes and functions of forest ecosystems, little is known about how understory vegetation affects the composition and function of soil microbial communities in forest ecosystems, especially in subtropical and tropical forests. This study used the experimental removal of understory fern (Dicranopteris dichotoma) to investigate the effect of the fern on substrate utilization patterns of culturable soil bacterial communities in two subtropical Eucalyptus plantations. One year after treatment, the removal of understory fern significantly increased soil temperature by 2–3 °C and retarded litter decomposition by 5.6–23.1%. However, understory fern removal did not affect the substrate utilization pattern of soil bacterial communities. Our study provides evidence that, although understory fern removal significantly alters soil temperature and litter decomposition rate, the disturbance caused by understory removal one year after treatment is too weak to cause detectable changes in substrate utilization pattern of culturable soil bacterial communities in subtropical Eucalyptus plantations.  相似文献   

19.
Steam disinfestation is an ecologically less harmful alternative to synthetic chemical fumigants such as methyl bromide, which is being phased out of use due to its ozone-depleting properties. Although previous studies have characterized the effects of steaming on targeted pests, soil microorganisms, including beneficial ones, may be strongly influenced by this agricultural practice, since: (1) high temperature disturbs most soil microorganisms; and (2) disinfestation-induced changes in the soil environment can indirectly affect soil microbiota. The impact of soil disinfestation on functional bacterial communities was evaluated particularly in view of their role in nitrogen cycling. The short-term effects of steam disinfestation on heterotrophic bacteria, denitrifying and nitrifying bacteria, and their ability to recover after this disturbance were examined by surveying the enzyme activity, size and genetic structure of each community. Our results show that: (1) steaming immediately induced significant decrease in community activity and size, and changes in community composition, nitrifying bacteria being mostly affected; (2) abundances of each community reached values equal or higher than those observed in control soil within 15–60 days after steaming, but community structures remained very different as compared to those in control soil; and (3) for each activity, no complete recovery was observed after the disturbance: substrate induced respiration and denitrification increased but remained lower in steamed soil, whereas nitrification was not detectable after 62 days. Our results show that these effects of steaming on key soil functional communities can have important, long-lasting implications for nitrogen cycle that should be taken into account when evaluating the influence of such an agricultural practice.  相似文献   

20.
Soil microarthropods colonize a wide range of habitats including microhabitats such as earthworm burrows, ant nests, tree trunks, moss mats and wood decaying fungi. While many of these microhabitats have been investigated intensively, the role of wood decaying fungi as a habitat and food resource for microarthropods found little attention. We investigated the density, community structure, reproductive mode and trophic structure of microarthropods, in particular oribatid mites, in the wood decaying fungus Fomitopsis pinicola (Schwarts: Fr) Karst. along an altitudinal gradient in Germany spanning from 350 m to 1160 m. Microarthropods were extracted from sporocarps, and stable isotope ratios (15N/14N; 13C/12C) of the fungus and the microarthropods were measured. Densities of most microarthropod taxa were highest at lower altitudes and decreased with increasing altitude. Oribatid mites were the dominant animal taxon. Their community structure gradually changed with altitude. Stable isotope ratios indicated that oribatid mite and other arthropod species occupy distinct trophic niches but most do not feed on F. pinicola. Notably, species of the same genus, e.g. Carabodes, occupied different trophic niches. Most oribatid mite species in F. pinicola reproduced sexually which is similar to the bark of trees but in contrast to the soil where most species reproduce via parthenogenesis. The findings indicate that (1) at high altitudes microarthropod density in fungal fruiting bodies is limited by low temperatures reducing animal metabolism and reproduction, and this also affects oribatid mite community structure, (2) despite the uniform habitat trophic niches of oribatid mite species differ and this also applies to morphologically similar species of the same genus, and (3) feeding on F. pinicola or associated resources facilitates the dominance of sexual reproducing species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号