首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
为了研究钢-超高性能混凝土(UHPC)轻型组合桥面结构的横向抗弯开裂性能,综合考虑配筋率、保护层厚度、UHPC层厚度和栓钉间距4个影响因素,对40个钢-UHPC组合板试件进行受弯开裂正交试验. 结果表明,未配筋构件裂缝数量少且裂缝扩展较快,配筋可以提高构件的开裂刚度,加强裂缝扩展阶段,使构件出现多元开裂特性. 配筋率对开裂应力的影响最大,其次是保护层厚度,然后是栓钉间距,UHPC厚度对开裂应力的影响较小. 在配筋率较高时减小保护层厚度,开裂应力提高幅度较大. UHPC厚度为45 mm的组合板的开裂应力为18.7~27.8 MPa,UHPC厚度为60 mm的组合板的开裂应力为17.2~27.4 MPa,远超虎门大桥的工程需求. 根据现有规范公式计算钢-UHPC组合结构开裂荷载偏保守. 根据密集配筋钢-UHPC组合结构特点,提出钢筋应力和开裂荷载计算方法,计算结果和试验实测结果较吻合.  相似文献   

2.
为了解决钢-UHPC组合桥面板因UHPC层较薄导致剪力件高度受限、施工难度大、抗剪强度和刚度不足等问题,提出弧形钢筋、栓钉+弧形钢筋2种新型剪力连接方式. 考虑剪力件直径的影响,设计7组共14个推出试件,通过与栓钉剪力件对比分析,研究剪力件的抗剪性能及承载力. 结果表明:3种剪力件的破坏形态及破坏机理、荷载?滑移曲线变化规律区别明显. 弧形钢筋剪力件的延性和刚度均优于另外2种剪力件,且与直径呈线性关系. 基于线性回归分析,给出考虑栓钉周围楔形块对栓钉剪力件抗剪贡献的承载力计算公式、考虑弧形钢筋和其内部UHPC共同抗剪的承载力计算经验公式,计算结果与试验值较吻合.  相似文献   

3.
为了研究钢-超高性能混凝土(UHPC)组合板的受弯性能,开展8块该类组合板的受弯试验,分析正、负弯矩作用下的受弯破坏开展全过程.在正弯矩作用下,组合板受弯破坏经历了线弹性阶段、裂缝开展阶段和屈服阶段,结构刚度两次衰减的拐点分别是界面滑移与钢板屈服,结构破坏时加载点附近UHPC局部压碎且剪弯段及端部界面出现脱空现象;在负弯矩作用下,UHPC层出现横向裂缝导致结构刚度第一次下降,随着裂缝的发展,截面内力重分布使得钢筋应力持续增大直至屈服,最终主裂缝宽度过大导致结构刚度严重衰减,组合板因UHPC层受拉断裂而破坏.采用有限元软件ABAQUS,建立非线性有限元模型.模型中考虑界面接触、材料非线性、混凝土损伤塑性模型等,模拟试验全过程.在与试验结果进行对比分析的基础上,分析影响钢-UHPC组合板抗弯性能的主要因素,包括界面黏结方式、纵筋配筋率、栓钉数及布置,研究这些因素对组合板抗弯极限承载力、结构刚度、跨中挠度等力学性能的影响.  相似文献   

4.
为研究装配式T型钢空腹夹层板组合楼盖的受力性能,对其理论计算公式进行了推导,并利用ABAQUS有限元分析软件建立了四边简支承装配式T型钢空腹夹层板组合楼盖的有限元模型,探讨各影响因素对该组合楼盖抗弯承载力的影响程度。分析结果表明:钢板厚度和钢材强度等级的改变对组合楼盖抗弯承载力的影响十分明显,而上层浇筑混凝土板厚度的增加、混凝土强度等级的提高,及连接上层混凝土板与下部钢结构的栓钉间距的减小,对组合楼盖抗弯承载力有一定的影响。理论计算方法验证结果表明,将组合楼盖截面的整体弯矩按上、下肋构件截面的刚度进行分配,再分别按组合构件和拉弯构件进行设计计算的方法是可行的。  相似文献   

5.
为研究碳纤维增强速生杨胶合木梁的受弯性能,考虑不同配纤率和配纤位置等因素的影响,进行梁的四点弯曲静力荷载试验,推导出梁的极限弯矩理论计算公式。研究表明:相比纯胶合木梁,碳纤维增强胶合木梁的裂缝减少、裂缝宽度减小。增强后梁的弹性模量提高了28.02%~57.93%;极限荷载提高了16.47%~50.72%;初始抗弯刚度提高了11.58%~23.37%。在受拉区配置碳纤维能提高试件的极限承载力和初始抗弯刚度,相比仅在受拉区配置碳纤维,在受拉区和受压区均配置碳纤维布时,试件的承载力反而减小,但破坏时的挠度降低。试件受拉区配纤率宜介于0.060 6%~1.031 1%之间,能充分利用木材的塑性抗压性能。利用推导的受弯计算公式计算得到的试件极限弯矩值与试验值吻合较好,计算结果能较好地预测此类试件受弯时的极限弯矩。  相似文献   

6.
为探究钢-薄层超高性能混凝土(ultra-high performance concrete, UHPC)轻型组合桥面体系在局部轮载下的抗弯性能,设计并开展了4块基于高强螺栓连接的可拆卸式钢-UHPC组合板的四点弯曲试验,研究了钢板类型、抗剪连接件间距对可拆卸式钢-UHPC组合板的破坏模式、荷载-挠度曲线、界面相对滑移、裂缝宽度、截面应变分布等影响规律,研究结果表明:在正弯矩荷载作用下,采用Q355钢板的组合板的破坏模式为高强螺栓被剪断,而采用负泊松比(negative Poisson’s ratio, NPR)钢板的组合板的破坏模式为部分高强螺栓被剪断、部分预埋带垫加长螺母被拔出、UHPC板由于失稳大面积压溃等;在相同的高强螺栓间距下,采用NPR钢板的组合板的板端相对滑移较小,说明NPR钢板有效延缓并限制了钢板与UHPC板的相对滑移,从而提升两者的协同变形能力,继而提高组合板的抗弯刚度及承载力等;由截面应变分析可知,由于NPR钢板的负泊松比效应、高刚度、高屈服强度,整个加载过程NPR钢板与底部UHPC层的拉应变保持着应变协调性,随着荷载的增大截面塑性中和轴的上移幅度可忽略不计。因此,...  相似文献   

7.
为了研究预应力碳纤维板加固钢-混凝土组合连续梁负弯矩区的受力性能,设计了3根6.2 m箱形组合截面的两跨连续梁试件,包括2根加固梁和1根对比梁。碳纤维板布置在负弯矩区混凝土板顶面,通过新型装配式预应力锚固系统进行后张有粘结加固,2根加固梁的预应力水平分别为20%和35%。结果表明:采用预应力碳纤维板加固钢-混凝土组合连续梁的负弯矩区,中支点截面的抗弯极限承载力分别提高了19.4%和28.5%,且抗裂性大幅增强;碳纤维板加固可限制裂缝的形成、发展,减小使用阶段的挠度和裂缝宽度,同时提高极限状态下的变形能力;截面应变符合平截面假定。最后,提出了连续组合梁中支点截面抗弯极限承载力的计算方法。  相似文献   

8.
预应力CFRP板加固钢-混凝土组合梁受弯性能试验   总被引:4,自引:1,他引:3  
为研究钢-混凝土组合梁经预应力碳纤维板加固后的受弯性能,设计4根预应力碳纤维板加固试件和1根不加固的对比试件. 5根试件均为工字形钢-混凝土组合简支梁,采用四点弯曲静力加载.锚固装置为自主研发的装配式预应力碳纤维板锚固系统,碳纤维板与钢梁之间的锚固主要依靠端部锚具,并辅之以专用环氧胶的黏结作用.试验中考虑碳纤维板的加固量和预应力水平两种因素对加固效果的影响.结果表明:加载全过程截面应变基本符合平截面假定;增大碳纤维板的加固量能提高钢-混凝土组合梁的抗弯极限承载力;增大碳纤维板的预应力有助于提高钢-混凝土组合梁的屈服承载力,对结构抗弯刚度贡献有限;破坏阶段碳纤维板有断裂和剥离两种形式,其强度利用率可达到80%以上.所采用的锚固系统锚固力大、可靠度高,工程实用价值大;预应力碳纤维板加固钢-混凝土组合梁,能有效提高结构的抗弯承载力,是一种补强效果很好的主动加固技术.  相似文献   

9.
为充分发挥装配式工业化程度高和钢-混组合结构优良力学性能的优势,提出一种装配式双拼槽钢-混凝土组合楼板,对3组简支组合楼板试件进行了四点加载试验,研究了该组合楼板的竖向静载下力学性能。分析了楼板裂缝、挠度、应变(钢筋、钢梁、混凝土板)随荷载发展规律;基于极限平衡法,提出了考虑受拉薄膜效应和刚度强化系数的承载力计算公式。结果表明:组合楼板的变形呈双向板特征,试件破坏时均出现板顶角部裂缝和弧形裂缝,混凝土板底中心区域为网状裂缝和向角部延伸的斜裂缝,双拼主梁发生塑性弯曲;在楼板的中心挠度达到l0/40时,试件荷载分别为327.63 kN、436.92 kN和406.12 kN,组合楼板承载力较高;钢筋的应变发展在垂直钢梁方向较大,沿着塑性铰线屈服;考虑受拉薄膜效应和刚度强化系数的计算公式与试验结果吻合良好,准确地预测了楼板荷载-挠度全过程曲线。  相似文献   

10.
为实现预制UHPC薄板与钢构件的装配式连接、后期可拆卸等目标,以及针对钢-超薄超高性能混凝土(ultra high performance concrete, UHPC)组合桥面体系中UHPC层过薄而无法采用常规抗剪连接件的问题,提出一种由预埋带垫加长套筒、高强螺栓连接组成的新型抗剪连接方式。开展了6组新型螺栓连接件的推出试验,包括5组高强螺栓和1组负泊松比螺栓连接件,分析了新型连接件的破坏形态及荷载-滑移曲线特征,研究了螺栓直径、螺栓长径比、螺栓种类等参数对极限滑移、抗剪刚度等力学性能的影响,研究结果表明:新型螺栓连接件的破坏形态均为螺栓杆被剪断,预埋带垫加长套筒底部的UHPC无损坏压溃现象;新型高强螺栓连接件的抗剪承载力、界面相对滑移随高强螺栓的直径增大而增大;高强螺栓连接件的抗剪承载力约为螺栓抗拉强度的55.8%,故建议在钢-UHPC组合构件中采用较大直径的高强螺栓连接件,有效减少抗剪连接件的数量;而负泊松比螺栓的抗剪承载力和抗剪刚度明显较小,但极限滑移却明显增大,表现出良好的延性,建议将负泊松比螺栓应用于钢-UHPC组合构件的负弯矩区段,避免负弯矩区段出现开裂。  相似文献   

11.
淮河中游弯道形态特征分析   总被引:1,自引:0,他引:1  
文章着重对淮河中游的弯道分布及弯曲半径、中心角、曲折系数进行了统计分析,并对弯道的断面形态进行了初步探讨.  相似文献   

12.
为研究钢纤维的表面形态对混凝土的综合性能的影响,对钢纤维进行了电镀铜处理,得到表面粗糙的钢纤维,再将光滑面和粗糙面的钢纤维分别掺入混凝土中,开展了对比试验并进行了分析.试验结果表明:表面粗糙的钢纤维与混凝土的黏结强度和光面的钢纤维相比有所增长;钢纤维混凝土的抗折强度提高约10%;表面粗糙的钢纤维对混凝土的增韧作用提升幅度达30%.  相似文献   

13.
根据压区粘钢梁的受力机理,推导出压区粘钢梁在四种破坏情况下的极限受弯承载力及界限破坏时的界限受弯承载力的计算公式和加固钢板高度公式.将理论计算值与压区粘钢梁的试验数据进行了对比,分析了所推导公式出现计算误差的原因,并提出了改进的方法.  相似文献   

14.
对国内外研究钢管混凝土具有代表性的规范进行了研究,并通过7根填充高强灌浆料的方矩形钢管混凝土受弯构件的试验研究,分析了它们在不同高宽比、钢管壁厚条件下的抗弯承载力及抗弯刚度,并将试验结果与日本 AIJ(1997)、欧洲 EC4(1996)、中国 CECS159(2004)等规范的计算结果进行了比较。结果表明,日本AIJ规范安全储备最高,相应造价也要提高,DBJ规范和试验值比较接近,工程使用比较经济,并有足够安全储备,而其他三个规范介于二者之间。 关键词:方矩形钢管混凝土;抗弯刚度;抗弯承载力;规范 中图分类号:TU323.3 文献标识号 A  相似文献   

15.
上下层布式钢纤维混凝土的抗折疲劳方程   总被引:4,自引:0,他引:4  
在疲劳试验的基础上,对上下层布式钢纤维混凝土的抗折疲劳强度进行了研究,得到了上下层布式钢纤维混凝土的抗折疲劳方程。在此基础上,与已有公式进行了对比计算,结果表明,两者计算结果非常接近,可供路面设计参考使用。  相似文献   

16.
对13根共5个截面尺寸的钢筋混凝土梁开展尺寸效应试验研究,详细观察记录不同阶段的破坏过程,并采集相应截面弯矩、挠度、截面应变等试验数据。在研究尺度内,评价了混凝土材料抗压性能尺寸效应对极限承载力的影响,实测并推导了相关特征参数随试件尺寸的变化规律,基本验证了现阶段受弯构件正截面极限承载力计算理论的安全性。同时也发现,对于大尺寸受弯构件而言,规范对混凝土非均匀受压极限压应变的取值偏大;试件受压区混凝土材料的极限变形能力随试件尺寸增大而减小,鉴于承载能力极限状态下的破坏特征与之联系紧密,应该引起充分重视。  相似文献   

17.
为了考察持续荷载作用下外贴碳纤维布(CFRP)对梁的抗弯性能的影响,进行了16根外贴CFRP加固的钢筋混凝土(RC)梁和2根对比梁的抗弯试验.试验参数为:纵筋配筋率、CFRP加固量、持载点.并对构件的各特征点的荷载、承载力及各受力阶段的刚度进行了详细的分析.试验及分析结果表明,采用CFRP加固的钢筋混凝土梁的刚度较普通钢筋混凝土梁的刚度都有明显提高,纤维布对承受以抗弯为主的构件具有增强刚度、控制挠度的作用;纤维加固时梁所承受的荷载大小,即加固时梁内已存在的弯曲裂缝的宽度对梁的屈服荷载及极限承载力影响不是很大,但对梁的刚度有较大影响,特别是对屈服阶段的刚度影响较大.其试验及分析结果对相应规范的编制及工程应用具有较高的参考价值.  相似文献   

18.
为研究毛竹杆的受弯性能,先对取自10根毛竹的40组竹条标准材性件进行抗弯试验,得到其破坏模式和抗弯强度;再对直径为90、120 mm,跨距为3 000、3 600 mm的24根毛竹杆进行弯曲试验,研究其荷载—位移曲线、初始抗弯刚度、极限承载力、挠度、破坏模式等相关力学性能;理论推导毛竹梁破坏受压区高度及受拉区边缘应力。结果表明:毛竹梁跨距变化对挠度的影响大于直径变化对挠度的影响,毛竹梁直径越大、跨距越小,初始抗弯刚度越大;根据试验数据,按弹性理论计算出毛竹杆受弯破坏时的受压区高度在3R/2处,在小挠度条件下,毛竹梁受弯符合平截面假定,大挠度条件下,截面受压区高度上移,计算出的破坏边缘拉应力与平截面假定计算的结果不一致,建议毛竹梁受弯破坏弯矩按上边缘顺纹抗压强度达到最大进行计算。  相似文献   

19.
20.
目的研究加固RC足尺梁在不同加固方式和加固配筋率参数条件下加固梁受弯性能和破坏特征,为推广这种新型复合材料的应用提供理论依据.方法通过对14根采用该工艺加固的足尺钢筋混凝土梁和6根对比梁进行了受弯性能的试验.结果能有效提高梁的受弯承载力和刚度,较好地约束了裂缝的发展,具有良好的加固效果.结论高性能复合砂浆钢筋网对足尺RC梁进行抗弯加固,能较大幅度提高RC梁正截面承载力,相同的加固方法对原配筋率不同的试件的极限承载力的提高幅度近似,在使用上限范围内,承载力随加固纵向钢筋的面积增大而增大,加固后梁的截面刚度有一定提高,随着一次受力水平的提高,加固梁截面抗弯刚度提高程度越小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号