首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas and oil are mainly transported through long-distance pipelines on land. Pipeline leaks lead to severe hazards to the environment and economy and even imperil human lives. Negative pressure wave (NPW)-based methods are fast and effective for leak monitoring and localization. The key problem for an NPW-based method is to determine the NPW and its arrival time, which is characterized by the knee point in the time domain signal. In this paper, an image rotation method is proposed based on the shape characteristic of the time domain signal induced by an NPW. Through image rotation, the knee point turns into the highest point, which is easy to detect. To verify the performance of the proposed method, leakage experiments were conducted on liquid and gas pipeline models. Previously developed FBG pipe fixture sensors were used to detect an NPW. These sensors were equidistantly installed on the pipeline, forming a sensor array. Based on the sensing array, a novel leak localization algorithm was used to compute the leakage position. The experimental results indicated that the image rotation method has good performance for identifying an NPW, even though many noise- and pressure-induced fluctuations exist in the signals. This method enables automated real-time monitoring and has potential for practical application.  相似文献   

2.
The leakage of oil/gas pipelines is one of the major factors to influence the safe operation of pipelines. So it is significant to detect and locate the exact pipeline leakage. A novel leak location method based on characteristic entropy is proposed to extract the input feature vectors. In this approach, the combination of wavelet packet and information entropy is called “wavelet packet characteristic entropy” (WP-CE). The combination of empirical mode decomposition and information entropy is called “empirical mode decomposition characteristic entropy” (EMD-CE). Both pressure signal and flow signal of low noise and high noise of pipeline leakage are decomposed to extract the characteristic entropy. The location of pipeline leak is determined by the combination of the characteristic entropy as the input vector and particle swarm optimization and support vector machine method (PSO-SVM). The results of proposed leak location method are compared with those of PSO-SVM based on physical parameters. Under the condition of high noise, the results of proposed leak location method are better than those of PSO-SVM based on physical parameters.  相似文献   

3.
With the development of natural gas transportation systems, major accidents can result from internal gas leaks in pipelines that transport high-pressure gases. Leaks in pipelines that carry natural gas result in enormous financial loss to the industry and affect public health. Hence, leak detection and localization is a major concern for researchers studying pipeline systems. To ensure the safety and improve the efficiency of pipeline emergency repair, a high-pressure and long-distance circular pipe leakage simulation platform is designed and established by similarity analysis with a field transmission pipeline, and an integrated leakage detection and localization model for gas pipelines is proposed. Given that the spread velocity of acoustic waves in pipelines is related to the properties of the medium, such as pressure, density, specific heat, and so on, this paper proposes a modified acoustic velocity and location formula. An improved wavelet double-threshold de-noising optimization method is also proposed to address the original acoustic wave signal collected by the test platform. Finally, the least squares support vector machine (LS-SVM) method is applied to determine the leakage degree and operation condition. Experimental results show that the integrated model can enhance the accuracy and precision of pipeline leakage detection and localization.  相似文献   

4.
结合实验室声发射仪和油气管道设备,建立了充气管道泄漏声发射检测系统模型,分别在传感器间距、管道压力和泄漏量三种变化状态下进行了泄漏源定位影响实验。对管道泄漏声发射信号的时域统计特征、频域分布特征以及泄漏信号的相关性作了分析;从声信号能量累计和衰减特性方面对互相关定位法和幅度衰减测量区域定位法的可行性进行了计算,表明在传感器间距较小和泄漏量较小的状态下,在背景噪声较小的环境中,用互相关法具有较好的定位精度;而幅度衰减测量区域定位方法对泄漏源的定位误差较大。  相似文献   

5.
为了准确地检测城市燃气管道泄漏,提出了一种基于广义概念的管道泄漏检测定位方法。声发射技术对于管道泄漏的检测、定位是一个极好的工具,但由于泄漏源的传播容易受到周围背景噪声以及复杂工况的影响,其定位误差较大。基于时延估计的互相关信号处理方法被广泛用于管道泄漏检测定位,但由于泄漏应力波传播通道的动态特性,使得源信号在传播过程中会产生波形变化,给互相关函数峰值位置的确定带来困难。由此引入广义相关分析方法,通过对信号进行前置滤波,在一定程度上减少了传播通道动态特性因素对泄漏点定位的不利影响,得到了更为准确的时延估值。在此基础上,通过模拟实验,编写Matlab神经网络代码,构造GRNN模型,进一步预测定位。结果表明,GRNN预测的声发射检测值、互相关定位值以及广义相关定位值,相比之前定位精度分别得到提高,其中基于广义相关的延时估计方法定位最为精确,将该方法用于工程实际中,可以更加精确地定位出泄漏点。  相似文献   

6.
为加强城市供水管网渗漏诊断能力,采用基于模糊相似优先比的漏损判别方法实现供水管网漏损定位及漏损程度的同步诊断。通过MATLAB软件调用最新版EPANET V2.2建立供水管网模型,在管段中间加入扩散器模拟单次渗漏事件,通过更改扩散器系数实现渗漏量的控制;基于压力驱动水力分析得到各节点压力变化,遍历模拟各管段漏损后,通过建立节点压力灵敏度矩阵,采用K均值聚类法进行监测点布置;在此基础上,在易渗漏管段模拟产生不同渗漏级别的渗漏事件,以监测点压力变化值构建源范例库,在熵权法的基础上,采用模糊相似优先比方法同步诊断渗漏位置及渗漏程度。以某一实际管网为例,模拟产生50例历史渗漏事件,采用模糊相似优先比同步诊断新渗漏事件的渗漏位置及渗漏程度,并对比3种权重方法。结果表明:模糊相似优先比法可有效地实现渗漏定位与渗漏程度的同步诊断。  相似文献   

7.
天然气在土壤中扩散行为的实验研究对埋地管道泄漏点的科学定位及泄漏事故的预防具有重要意义.采用全尺度气体泄漏实验系统,模拟真实埋地管道泄漏场景,对泄漏后的天然气在土壤中的扩散对流过程进行实验研究.基于自行研制的气体检测与数据采集系统和GasClam地下气体在线监测仪,分析天然气在土壤中的对流扩散规律.结果表明:埋地管道泄漏后天然气在土壤中的对流扩散过程可以分为4个阶段:孕育阶段、陡然增长阶段、缓慢增长阶段和稳定阶段,其浓度随泄漏时间的变化过程符合S型曲线特征.天然气扩散至检测点所需时间与距泄漏口距离呈现近似的幂指数关系.当检测点位于泄漏口附近区域时,泄漏压力起主导作用.当检测点位于远离泄漏口区域时,泄漏量起主导作用.  相似文献   

8.
In order to study a new leak detection and location method for oil and natural gas pipelines based on acoustic waves, the propagation model is established and modified. Firstly, the propagation law in theory is obtained by analyzing the damping impact factors which cause the attenuation. Then, the dominant-energy frequency bands of leakage acoustic waves are obtained through experiments by wavelet transform analysis. Thirdly, the actual propagation model is modified by the correction factor based on the dominant-energy frequency bands. Then a new leak detection and location method is proposed based on the propagation law which is validated by the experiments for oil pipelines. Finally, the conclusions and the method are applied to the gas pipelines in experiments. The results indicate: the modified propagation model can be established by the experimental method; the new leak location method is effective and can be applied to both oil and gas pipelines and it has advantages over the traditional location method based on the velocity and the time difference. Conclusions can be drawn that the new leak detection and location method can effectively and accurately detect and locate the leakages in oil and natural gas pipelines.  相似文献   

9.
The noise included in pipeline pressure signal is a small noise whose energy takes a small proportion of pressure signal and is concentrated on high frequency components. However, it will influence pipeline leakage identification and even cause false alarms. Thus, a small-noise reduction method based on EMD (SNR-EMD) is proposed to remove small noise from pressure signal. EMD is applied for extracting the mean envelope of the signal. Then, small fluctuations around the mean envelope are considered to be small noises. Meanwhile, end effect of SNR-EMD is restrained by extrema mirror extension (EME). The results of simulation studies with SNR-EMD show that the larger the noisy signal's signal-to-noise ratio (SNR) is, the better noise reduction effect becomes. And SNR-EMD considered as a low-pass filter removes or reduces the high frequency components. Furthermore, superiorities of SNR-EMD are verified by comparison studies with wavelet packet transform (WPT) and singular value decomposition (SVD). Finally, a case study of leakage identification shows that SNR-EMD can improve the performance of leakage identification and reduce the possibility of false alarms, which makes much easier and further effective to distinguish the leakage mode from other modes after removing noise from pressure signal.  相似文献   

10.
Pipeline faults like leakage and blockage always create problem for engineers. Detection of exact fault quantity and its location is necessary for smooth functioning of a plant or industry and safety of the environment. In this paper brief discussion is made on various pipeline fault detection methods viz. Vibration analysis, Pulse echo methodology, Acoustic techniques, Negative pressure wave based leak detection system, Support Vector Machine (SVM) based pipeline leakage detection, Interferometric fibre sensor based leak detection, Filter Diagonalization Method (FDM), etc. In this paper merit and demerits of all methods are discussed. It is found that these methods have been applied for specific fluids like oil, gas and water, for different layout patterns like straight and zigzag, for various lengths of pipeline like short and long and also depending on various operating conditions. Therefore, a comparison among all methods has been done based on their applicability. Among all fault detection methods, Acoustic reflectometry is found most suitable because of its proficiency to identify blockages and leakage in pipe as small as 1% of its diameter. Moreover this method is economical and applicable for straight, zigzag and long, short length pipes for low, medium and high density fluid.  相似文献   

11.
Gas leakage from pipeline leads to significant environmental damages and industrial hazards, so small leakage detection for gas pipeline is essential to avoid these serious leakages. However, because of the high frequency component of leakage signal attenuates quickly, traditional detection method which inspects pressure or vibration signal has problem to get effective information from leakage signal. So, a novel detection method based on acoustic wave is proposed. This paper, firstly, researches on the phonation principle of pipeline leakage and the characteristic of sound source, and simulates the leakage acoustic field on the basis of aero acoustics. Secondly, using Wavelet Packet Transform method and Fuzzy Support Vector Machine pattern classification, the laboratory testing for identifying acoustic signal of gas pipeline leakage is presented. Finally, the field application demonstrates that the detection system could identify small gas leakage effectively and avoids false-alarms which caused by running conditions with a good prospect.  相似文献   

12.
With the rapid development of petroleum industry, the transport pipelines of oil and gas are increasingly constructed to minimize land use conflicts. Therefore, the parallel pipelines are unavoidable in order to save land resource, reduce the pipeline construction and maintenance costs. The economy and security of pipeline laying and running is the primary problem considered in pipeline construction, which the parallel spacing plays a decisive role to. The leakage of natural gas is very serious and dangerous due to its flammable and combustible. The explosive of leak gas causes impact failure to parallel pipeline. Specific to the surface conduit parallel gas pipeline, numerical simulation of leak natural gas explosive was carried out based on TNT equivalent weight method. Explosive damage degree of pipeline decreased with the pipeline distance increasing. Consulting with the pipeline ovalization strain design criteria and the combustion effect, the safety parallel natural gas pipeline space maybe at least 4 m to ensure the surface conduit parallel pipeline safely and steadily operation.  相似文献   

13.
In the long distance pipeline remote monitoring system, small leak detection becomes an important issue. Weak singularities in small leak signals are usually difficult to detect precisely under complicated noise background, which may cause false alarm or miss alarm. The advantage of applying the harmonic wavelet method is explored in this paper. Pipeline small leak sensitive characteristics are recognized and the negative pressure wave inflexions are extracted by harmonic wavelet analysis, expressed in terms of harmonic wavelet time-frequency mesh map, time-frequency contour map, and time-frequency profile plot. This paper also presents a comparative study of both Daubechies wavelet and harmonic wavelet analysis when applied to pipeline small leak detection under complicated background noises. Results of simulating test and field experiment show that it is possible to distinguish weak non-stationarities from complicated noises by harmonic wavelet analysis in pipeline small leak detection system. The comparison clearly illustrates that harmonic wavelet based pipeline small leakage detection method is significantly more accurate than other wavelets analysis such as Daubechies wavelet. This work provides a reliable and safe guarantee for oil and gas long distance transportation, reducing petroleum product losses and protecting surrounding environment.  相似文献   

14.
During the detection of pipeline leakages, false alarms of leak detection could be markedly reduced if the interference signals resulting from pressure regulating, pump regulating or valve movements could be accurately distinguished. A digital recognition method for interference signals and leakage signals based on a dual-sensor system is proposed in this paper. It is demonstrated that the direction of the signal can be recognized by a cross-correlation calculation between two signals from the dual-sensor, one of which undergoes forward linear interpolation and backward linear interpolation. Based on this theory, the interference signal and the leak signal can be discriminated exactly, and the distance between the two sensors in the dual-sensor system can be considerably reduced without needing to increase the sampling frequency. The monotonicity of the cross-correlation function is demonstrated, and a fast discrimination algorithm based on a binary extreme search method, which decreases the computational load and maintains global optimization, is also proposed. A pre-processing method of the actual signal is proposed to decrease the identity requirement for the two sensors in a dual-sensor system. In the experiment based on artificial signals, the proposed discrimination algorithm could achieve accurate recognition of the abnormal signal, and as such, the theory and application of pipeline leak detection based on dual-sensor systems are extended.  相似文献   

15.
To solve the problems of the difficulty in early leakage monitoring and larger positioning error for urban hazardous chemicals pipelines, the optimized method based on the improved Inverse Transient Analysis (ITA) and Ant Lion Optimizer (ALO) was proposed. Firstly, based on the obtained experiment's results of leakage of natural gas in the non-metallic pipeline, the segment classification method was incorporated into the pressure gradient calculation. The modified method can adapt to the multi-node characteristics of urban pipe networks and help to obtain the preliminary positioning calculation results after optimization. Then the calculation results were embedded in the ITA calculation model. The input parameters of the gas pipeline such as boundary conditions, leakage rate and friction coefficient were used to establish the characteristic linear equations. Then the objective function of the least-squares criterion was defined, and the improved ITA model suitable for leakage detection of urban natural gas pipeline networks was constructed. Finally, the ALO was used to optimize the calculation process of the improved ITA model, and iteratively optimize the optimal friction coefficient and its corresponding minimum objective function (OF) value. As a result, a more precise location of the leakage source was calculated. The validation of the modified method is conducted by comparing the calculated values with the experiment's results. The results show that the method can accurately predict the location where the pipeline leakage occurs. The minimum error is 3.17%. Compared with the traditional ITA, this method not only accelerates the convergence speed of the objective function, but also improves the accuracy of location calculation.  相似文献   

16.
为检测和定位燃气管道泄漏,基于泄漏定位公式,利用模拟软件Pipeline Studio构建等效中压管道模型,模拟不同工况条件下燃气管道泄漏动态。结果表明:泄漏发生后,一定时域内用户端流量将出现扰动,供气压力越高、供气量越大、泄漏孔径越小、管道长度越长,流量扰动持续时间越长;忽略管长影响,泄漏位置越接近气源,流量扰动幅度越易出现先增大后减小趋势,反之易出现单调递减趋势;泄漏端位置距离用户端越近,流量扰动幅度越大,反之越小。研究结果可为燃气管道泄漏检测和定位提供理论依据。  相似文献   

17.
An improved and integrated approach of support vector machine and particle swarm optimization theory (PSO-SVM) is first used to detect the leak location of pipelines and overcome the problem of multiple leaks. The calibration and predictive ability of improved PSO-SVM is investigated and compared with that of other common method, back-propagation neural network (BPNN). Two conditions are evaluated. One with a leak involves a set of 20 samples, while another with two leaks has 127 samples. Both internal and external validations are performed to validate the performance of the resulting models. The results show that, for the two conditions, the values calculated by improved PSO-SVM are in good agreement with those simulated by transient model, and the performances of improved PSO-SVM models are superior to those of BPNN. This paper provides a new and effective method to inspect the multiple leak locations, and also reveals that improved PSO-SVM can be used as a powerful tool for studying the leak of pipeline.  相似文献   

18.
Negative-wave-based leakage detection and localization technology has been widely used in the pipeline system to diminish leak loss and enhance environmental protection from hazardous leak events. However, the fluid mechanics behind the negative wave method has yet been disclosed. The objective of this paper is to investigate the generation and propagation of negative wave in high-pressure pipeline leakage. A three-dimensional computational fluid dynamic (CFD) study on the negative wave was carried out with large eddy simulation (LES) method. Experimentally validated simulation presented the transient wave generation at the leak onset and the comprehensive wave evolution afterwards. Negative wave was proven to be a kind of rarefaction acoustic waves induced by transient mass loss at the onset of leakage. Diffusion due to the density difference at wave fronts drives the negative wave propagation. Propagation of negative wave can be categorized into three states – semi-spherical wave, wave superposition and plane wave, based on different wave forms. The wave characteristics at different states were elucidated and the attenuation effects were discussed respectively. Finally, a non-dimensional correlation was proposed to predict the negative wave amplitude based on pipeline pressure and leak diameter.  相似文献   

19.
为研究不同的多点泄漏工况对管道流动参数的影响,基于流动方程建立数学模型,讨论泄漏后压力下降幅值与泄漏位置、泄漏点数的关系,在室内输气环道采集多点泄漏工况下的压力信号并对理论分析结果进行验证。结果表明:泄漏点的上游和下游压力均减小,越靠近泄漏点压力降越大;2个泄漏点之间压力也下降,越靠近上游泄漏点,压力下降幅度越大;泄漏点距起点越近,泄漏引起的压力降低幅值越大。压力下降的幅值受距离起点最近的泄漏点位置影响最大,且随着泄漏点数的增多而增大。  相似文献   

20.
Leakage diagnosis of hydrocarbon pipelines can prevent environmental and financial losses. This work proposes a novel method that not only detects the occurrence of a leakage fault, but also suggests its location and severity. The OLGA software is employed to provide the pipeline inlet pressure and outlet flow rates as the training data for the Fault Detection and Isolation (FDI) system. The FDI system is comprised of a Multi-Layer Perceptron Neural Network (MLPNN) classifier with various feature extraction methods including the statistical techniques, wavelet transform, and a fusion of both methods. Once different leakage scenarios are considered and the preprocessing methods are done, the proposed FDI system is applied to a 20-km pipeline in southern Iran (Goldkari-Binak pipeline) and a promising severity and location detectability (a correct classification rate of 92%) and a low False Alarm Rate (FAR) were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号