首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Computerized automatic registration of MR-PET images of the brain is of significant interest for multimodality brain image analysis. Here, the authors discuss the principal axes transformation for registration of three-dimensional MR and PET images. A new brain phantom designed to test MR-PET registration accuracy determines that the principal axes registration (PAR) method is accurate to within an average of 1.37 mm with a standard deviation of 0.78 mm. Often the PET scans are not complete in the sense that the PET volume does not match the respective MR volume. The authors have developed an iterative PAR (IPAR) algorithm for such cases. Partial volumes of PET can be accurately registered to the complete MR volume using the new iterative algorithm. The quantitative and qualitative analyses of MR-PET image registration are presented and discussed. Results show that the new PAR algorithm is accurate and practical in MR-PET correlation studies  相似文献   

2.
Two-dimensional (2-D)-to-three-dimensional (3-D) registration can improve visualization which may aid minimally invasive neurointerventions. Using clinical and phantom studies, two state-of-the-art approaches to rigid registration are compared quantitatively: an intensity-based algorithm using the gradient difference similarity measure; and an iterative closest point (ICP)-based algorithm. The gradient difference approach was found to be more accurate, with an average registration accuracy of 1.7 mm for clinical data, compared to the ICP-based algorithm with an average accuracy of 2.8 mm. In phantom studies, the ICP-based algorithm proved more reliable, but with more complicated clinical data, the gradient difference algorithm was more robust. Average computation time for the ICP-based algorithm was 20 s per registration, compared with 14 min and 50 s for the gradient difference algorithm.  相似文献   

3.
Two-dimensional (2-D)-to-three-dimensional (3-D) registration can improve visualization which may aid minimally invasive neurointerventions. Using clinical and phantom studies, two state-of-the-art approaches to rigid registration are compared quantitatively: an intensity-based algorithm using the gradient difference similarity measure; and an iterative closest point (ICP)-based algorithm. The gradient difference approach was found to be more accurate, with an average registration accuracy of 1.7 mm for clinical data, compared to the ICP-based algorithm with an average accuracy of 2.8 mm. In phantom studies, the ICP-based algorithm proved more reliable, but with more complicated clinical data, the gradient difference algorithm was more robust. Average computation time for the ICP-based algorithm was 20 s per registration, compared with 14 min and 50 s for the gradient difference algorithm.  相似文献   

4.
In this paper we present a new approach for the nonrigid registration of contrast-enhanced breast MRI. A hierarchical transformation model of the motion of the breast has been developed. The global motion of the breast is modeled by an affine transformation while the local breast motion is described by a free-form deformation (FFD) based on B-splines. Normalized mutual information is used as a voxel-based similarity measure which is insensitive to intensity changes as a result of the contrast enhancement. Registration is achieved by minimizing a cost function, which represents a combination of the cost associated with the smoothness of the transformation and the cost associated with the image similarity. The algorithm has been applied to the fully automated registration of three-dimensional (3-D) breast MRI in volunteers and patients. In particular, we have compared the results of the proposed nonrigid registration algorithm to those obtained using rigid and affine registration techniques. The results clearly indicate that the nonrigid registration algorithm is much better able to recover the motion and deformation of the breast than rigid or affine registration algorithms.  相似文献   

5.
In this study, we registered live-time interventional magnetic resonance imaging (iMRI) slices with a previously obtained high-resolution MRI volume that in turn can be registered with a variety of functional images, e.g., PET, SPECT, for tumor targeting. We created and evaluated a slice-to-volume (SV) registration algorithm with special features for its potential use in iMRI-guided radio-frequency (RF) thermal ablation of prostate cancer. The algorithm features included a multiresolution approach, two similarity measures, and automatic restarting to avoid local minima. Imaging experiments were performed on volunteers using a conventional 1.5-T MR scanner and a clinical 0.2-T C-arm iMRI system under realistic conditions. Both high-resolution MR volumes and actual iMRI image slices were acquired from the same volunteers. Actual and simulated iMRI images were used to test the dependence of SV registration on image noise, receive coil inhomogeneity, and RF needle artifacts. To quantitatively assess registration, we calculated the mean voxel displacement over a volume of interest between SV registration and volume-to-volume registration, which was previously shown to be quite accurate. More than 800 registration experiments were performed. For transverse image slices covering the prostate, the SV registration algorithm was 100% successful with an error of <2 mm, and the average and standard deviation was only 0.4 mm +/- 0.2 mm. Visualizations such as combined sector display and contour overlay showed excellent registration of the prostate and other organs throughout the pelvis. Error was greater when an image slice was obtained at other orientations and positions, mostly because of inconsistent image content such as that from variable rectal and bladder filling. These preliminary experiments indicate that MR SV registration is sufficiently accurate to aid image-guided therapy.  相似文献   

6.
Image processing was used as a fundamental tool to derive motion information from magnetic resonance (MR) images, which was fed back into prospective respiratory motion correction during subsequent data acquisition to improve image quality in coronary MR angiography (CMRA) scans. This reduces motion artifacts in the images and, in addition, enables the usage of a broader gating window than commonly used today to increase the scan efficiency. The aim of the study reported in this paper was to find a suitable motion model to be used for respiratory motion correction in cardiac imaging and to develop a calibration procedure to adapt the motion model to the individual patient. At first, the performance of three motion models [one-dimensional translation in feet-head (FH) direction, three-dimensional (3-D) translation, and 3-D affine transformation] was tested in a small volunteer study. An elastic image registration algorithm was applied to 3-D MR images of the coronary vessels obtained at different respiratory levels. A strong intersubject variability was observed. The 3-D translation and affine transformation model were found to be superior over the conventional FH translation model used today. Furthermore, a new approach is presented, which utilizes a fast model-based image registration to extract motion information from time series of low-resolution 3-D MR images, which reflects the respiratory motion of the heart. The registration is based on a selectable global 3-D motion model (translation, rigid, or affine transformation). All 3-D MR images were registered with respect to end expiration. The resulting time series of model parameters were analyzed in combination with additionally acquired motion information from a diaphragmatic MR pencil-beam navigator to calibrate the respiratory motion model. To demonstrate the potential of a calibrated motion model for prospective motion correction in coronary imaging, the approach was tested in CMRA examinations in five volunteers.  相似文献   

7.
Elastic registration in the presence of intensity variations   总被引:7,自引:0,他引:7  
We have developed a general-purpose registration algorithm for medical images and volumes. This method models the transformation between images as locally affine but globally smooth. The model also explicitly accounts for local and global variations in image intensities. This approach is built upon a differential multiscale framework, allowing us to capture both large- and small-scale transformations. We show that this approach is highly effective across a broad range of synthetic and clinical medical images.  相似文献   

8.
Local frequency representations for robust multimodal image registration   总被引:3,自引:0,他引:3  
Automatic registration of multimodal images involves algorithmically estimating the coordinate transformation required to align the data sets. Most existing methods in the literature are unable to cope with registration of image pairs with large nonoverlapping field of view (FOV). We propose a robust algorithm, based on matching dominant local frequency image representations, which can cope with image pairs with large nonoverlapping FOV. The local frequency representation naturally allows for processing the data at different scales/resolutions, a very desirable property from a computational efficiency view point. Our algorithm involves minimizing-over all rigid/affine transformations--the integral of the squared error (ISE or L2 E) between a Gaussian model of the residual and its true density function. The residual here refers to the difference between the local frequency representations of the transformed (by an unknown transformation) source and target data. We present implementation results for image data sets, which are misaligned magnetic resonance (MR) brain scans obtained using different image acquisition protocols as well as misaligned MR-computed tomography scans. We experimently show that our L2E-based scheme yields better accuracy over the normalized mutual information.  相似文献   

9.
We created a method for three-dimensional (3-D) registration of medical images (e.g., magnetic resonance imaging (MRI) or computed tomography) to images of physical tissue sections or to other medical images and evaluated its accuracy. Our method proved valuable for evaluation of animal model experiments on interventional-MRI guided thermal ablation and on a new localized drug delivery system. The method computes an optimum set of rigid body registration parameters by minimization of the Euclidean distances between automatically chosen correspondence points, along manually selected fiducial needle paths, and optional point landmarks, using the iterative closest point algorithm. For numerically simulated experiments, using two needle paths over a range of needle orientations, mean voxel displacement errors depended mostly on needle localization error when the angle between needles was at least 20 degrees. For parameters typical of our in vivo experiments, the mean voxel displacement error was < 0.35 mm. In addition, we determined that the distance objective function was a useful diagnostic for predicting registration quality. To evaluate the registration quality of physical specimens, we computed the misregistration for a needle not considered during the optimization procedure. We registered an ex vivo sheep brain MR volume with another MR volume and tissue section photographs, using various combinations of needle and point landmarks. Mean registration error was always < or = 0.54 mm for MR-to-MR registrations and < or = 0.52 mm for MR to tissue section registrations. We also applied the method to correlate MR volumes of radio-frequency induced thermal ablation lesions with actual tissue destruction. In this case, in vivo rabbit thigh volumes were registered to photographs of ex vivo tissue sections using two needle paths. Mean registration errors were between 0.7 and 1.36 mm over all rabbits, the largest error less than two MR voxel widths. We conclude that our method provides sufficient spatial correspondence to facilitate comparison of 3-D image data with data from gross pathology tissue sections and histology.  相似文献   

10.
11.
An image processing technique is presented for finding and localizing the centroids of cylindrical markers externally attached to the human head in computed tomography (CT) and magnetic resonance (MR) image volumes. The centroids can be used as control points for image registration. The technique, which is fast, automatic, and knowledge-based, has two major steps. First, it searches the entire image volume to find one voxel inside each marker-like object. The authors call this voxel a “candidate” voxel, and they call the object a candidate marker. Second, it classifies the voxels in a region surrounding the candidate voxel as marker or nonmarker voxels using knowledge-based rules and calculates an intensity-weighted centroid for each true marker. The authors call this final centroid the “fiducial” point of the marker. The technique was developed on 42 scans of six patients-one CT and six MR scans per patient. There are four markers attached to each patient for a total of 168 marker images. For the CT images the false marker rate was zero. For MR the false marker rate was 1.4% (Two out of 144 markers). To evaluate the accuracy of the fiducial points, CT-MR registration was performed after correcting the MR images for geometrical distortion. The fiducial registration accuracy averaged 0.4 mm and was better than 0.6 mm for each of the eighteen image pairs  相似文献   

12.
This paper addresses the problem of neuro-anatomical registration across individuals for functional [15O] water PET activation studies. A new algorithm for three-dimensional (3-D) nonlinear structural registration (warping) of MR scans is presented. The method performs a hierarchically scaled search for a displacement field, maximizing one of several voxel similarity measures derived from the two-dimensional (2-D) histogram of matched image intensities, subject to a regularizer that ensures smoothness of the displacement field. The effect of the nonlinear structural registration is studied when it is computed on anatomical MR scans and applied to coregistered [15O] water PET scans from the same subjects: in this experiment, a study of visually guided saccadic eye movements. The performance of the nonlinear warp is evaluated using multivariate functional signal and noise measures. These measures prove to be useful for comparing different intersubject registration approaches, e.g., affine versus nonlinear. A comparison of 12-parameter affine registration versus non-linear registration demonstrates that the proposed nonlinear method increases the number of voxels retained in the cross-subject mask. We demonstrate that improved structural registration may result in an improved multivariate functional signal-to-noise ratio (SNR). Furthermore, registration of PET scans using the 12-parameter affine transformations that align the coregistered MR images does not improve registration, compared to 12-parameter affine alignment of the PET images directly.  相似文献   

13.
Atherosclerosis at the carotid bifurcation resulting in cerebral emboli is a major cause of ischemic stroke. Most strokes associated with carotid atherosclerosis can be prevented by lifestyle/dietary changes and pharmacological treatments if identified early by monitoring carotid plaque changes. Registration of 3-D ultrasound (US) images of carotid plaque obtained at different time points is essential for sensitive monitoring of plaque changes in volume and surface morphology. This registration technique should be nonrigid, since different head positions during image acquisition sessions cause relative bending and torsion in the neck, producing nonlinear deformations between the images. We modeled the movement of the neck using a “twisting and bending” model with only six parameters for nonrigid registration. We evaluated the algorithm using 3-D US carotid images acquired at two different head positions to simulate images acquired at different times. We calculated the mean registration error (MRE) between the segmented vessel surfaces in the target image and the registered image using a distance-based error metric after applying our “twisting and bending” model-based nonrigid registration algorithm. We achieved an average registration error of $0.80 pm 0.26$ mm using our nonrigid registration technique, which was a significant improvement in registration accuracy over rigid registration, even with reduced degrees-of-freedom compared to the other nonrigid registration algorithms.   相似文献   

14.
Intraoperative brain deformations decrease accuracy in image-guided neurosurgery. Approaches to quantify these deformations based on 3-D reconstruction of cortectomy surfaces have been described and have shown promising results regarding the extrapolation to the whole brain volume using additional prior knowledge or sparse volume modalities. Quantification of brain deformations from surface measurement requires the registration of surfaces at different times along the surgical procedure, with different challenges according to the patient and surgical step. In this paper, we propose a new flexible surface registration approach for any textured point cloud computed by stereoscopic or laser range approach. This method includes three terms: the first term is related to image intensities, the second to Euclidean distance, and the third to anatomical landmarks automatically extracted and continuously tracked in the 2-D video flow. Performance evaluation was performed on both phantom and clinical cases. The global method, including textured point cloud reconstruction, had accuracy within 2 mm, which is the usual rigid registration error of neuronavigation systems before deformations. Its main advantage is to consider all the available data, including the microscope video flow with higher temporal resolution than previously published methods.   相似文献   

15.
Spatial transformations of diffusion tensor magnetic resonanceimages   总被引:3,自引:0,他引:3  
We address the problem of applying spatial transformations (or "image warps") to diffusion tensor magnetic resonance images. The orientational information that these images contain must be handled appropriately when they are transformed spatially during image registration. We present solutions for global transformations of three-dimensional images up to 12-parameter affine complexity and indicate how our methods can be extended for higher order transformations. Several approaches are presented and tested using synthetic data. One method, the preservation of principal direction algorithm, which takes into account shearing, stretching and rigid rotation, is shown to be the most effective. Additional registration experiments are performed on human brain data obtained from a single subject, whose head was imaged in three different orientations within the scanner. All of our methods improve the consistency between registered and target images over na?ve warping algorithms.  相似文献   

16.
A fully automatic, two-step, T1-weighted brain magnetic resonance imaging (MRI) segmentation method is presented. A preliminary mask of parenchyma is first estimated through adaptive image intensity analysis and mathematical morphological operations. It serves as the initial model and probability reference for a level-set algorithm in the second step, which finalizes the segmentation based on both image intensity and geometric information. The Dice coefficient and Euclidean distance between boundaries of automatic results and the corresponding references are reported for both phantom and clinical MR data. For the 28 patient scans acquired at our institution, the average Dice coefficient was 98.2% and the mean Euclidean surface distance measure was 0.074 mm. The entire segmentation for either a simulated or a clinical image volume finishes within 2 min on a modern PC system. The accuracy and speed of this technique allow us to automatically create patient-specific finite element models within the operating room on a timely basis for application in image-guided updating of preoperative scans.  相似文献   

17.
We present a method for accurate image registration and motion compensation in multidimensional signals, such as two-dimensional (2-D) X-ray images and three-dimensional (3-D) computed tomography/magnetic resonance imaging volumes. The method is based on phase from quadrature filters, which makes it robust to noise and temporal intensity variations. The method is equally applicable to signals of two, three or higher number of dimensions. We use parametric models, e.g., affine models, finite elements or local affine models with global regularization. Experimental results show high accuracy for 2-D and 3-D motion compensation.  相似文献   

18.
19.
一种应用于图像配准中的点特征匹配算法   总被引:1,自引:0,他引:1  
点特征匹配在机器视觉、图像配准等领域中有着重要的应用.针对空间存在较大仿射几何差异的图像中的点特征匹配问题,提出了一种利用马氏距离仿射不变性进行约束的松弛匹配算法,并将该算法应用于遥感图像配准中.实验结果表明,算法可以很好的完成点特征匹配,匹配点对数量充足且具备很高的正确率,从而可以保证图像配准的精度.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号