首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In order to obtain mullite/zirconia composites, mixtures of aluminum dross and zircon were sintered. Aluminum dross was collected and purified by a milling, sieving and washing process. Stoichiometric mixtures of aluminum dross and zircon were sintered at several temperatures (1400, 1450 and 1500 °C) for several periods of time (2, 4 and 6 h). After the purifying treatment the dross contained mainly Al2O3, AlN, MgAl2O4, SiO2 and metallic Al. A homogeneous mullite matrix with small zirconia particles was obtained by sintering the aluminum dross–zircon samples at 1500 °C for 6 h.  相似文献   

2.
《Ceramics International》2016,42(10):12161-12166
Mullite/ β-spodumene composites were fabricated by the addition of 5 up to 20 mass% β -spodumene powder to mullite matrix. Both mullite and β-spodumene were prepared by sol-gel technique. The batches were uniaxially pressed into discs and rectangular bars, then pressureless sintered at 1400 °C up to 1700 °C for 1 h. Mechanical and thermal properties, as well as microstructure and phase composition were carried out on the sintered composites. The results show that although the increase in the soft β-spodumene reduces the hardness and the thermal expansion of the composites, they lower the firing temperature and enhance the flexural strength. The study indicates that β-spodumene content has a noticeable effect on the composites thermal expansion coefficient. It also shows that it is possible to tailor mullite/ β-spodumene composite with adjusted thermal expansion coefficient by changing the mullite to β-spodumene ratio.  相似文献   

3.
The sintering behavior of nanocrystalline orthorhombic mullite powders was investigated. The changes in microstructure, mechanical and dielectric properties with two different heating rates were explained. Microstructural characteristics depending on heating rate were explained at different sintering temperatures. Dielectric properties of prepared mullite nanocomposites were studied to examine the synthesized mullite ceramics as high permittivity materials in the microwave range. It was indicated that a sharp decrease in bulk density was observed at 1600 °C due to the exaggerated growth of mullite grains. Moreover, a maximum hardness value of 4.97 GPa was obtained at 1600 °C with slow heating rate (5 °min?1). The DC electrical resistivity with a slow heating rate at 1300 °C was approximately three times the value of the mullite sample sintered with a fast heating rate (30 °min?1). The minimum dielectric loss of about 0.017 at 1.5 GHz was achieved at a sintering temperature of 1500 °C with a slow heating rate.  相似文献   

4.
《Ceramics International》2017,43(4):3919-3922
Mullite-based ceramics have been synthesized by reactive sintering of a mixture containing kaolin and a mica-rich kaolin waste. Samples fired in the temperature range from 1300 to 1500 °C were characterized by X-ray diffraction (XRD). The quantitative phase analysis and unit cell parameters of the mullite were determined by Rietveld refinement analysis of the XRD data. Mullite-based ceramics with 1.2 wt% quartz, 56.3 wt% glass (amorphous phase), 2.64 g/cm3 of apparent density, and 35±1.2 MPa of flexural strength were obtained after firing at 1500 °C. A liquid phase sintering mechanism activated by a total mica content of 13.3 wt% allowed to increase the mullite content to 47.6 wt% (2.3 wt% quartz and 50.1 wt% glass phase) and improve the flexural strength (70±3.9 MPa) after firing at 1400 °C.  相似文献   

5.
《Ceramics International》2016,42(12):13888-13892
A comparative analysis of the efficiency of zirconia ceramics sintering by thermal method and high-energy electron beam sintering was performed for compacts prepared from commercial TZ-3Y-E grade powder. The electron energy was 1.4 MeV. The samples were sintered in the temperature range of 1200–1400 °C. Sintering of zirconia ceramics by high-energy accelerated electron beam is shown to reduce the firing temperature by about 200 °C compared to that in conventional heating technique. Ceramics sintered by accelerated electron beam at 1200 °C is of high density, microhardness and smaller grain size compared to that produced by thermal firing at 1400 °C. Electron beam sintering at higher temperature causes deterioration of ceramics properties due to radiation-induced acceleration of high-temperature recrystallization at higher temperatures.  相似文献   

6.
《Ceramics International》2015,41(4):5397-5402
Hydrothermally synthesized BaTiO3 was colloidally consolidated by slip casting and by electrophoretic deposition in a high strength magnetic field of 17.4 T. Textured BaTiO3 was successfully prepared by both processing techniques, with the {001} plane aligning normal to the direction of the magnetic field. The initial alignment in the green powder compact was preserved and enhanced after sintering from 1400 °C to 1500 °C. The sintering temperature hardly influenced the degree of texture in slip cast samples but did influence the grain size of all BaTiO3 ceramics and the degree of texture in the electrophoretically deposited samples. The BaTiO3 ceramics processed in the strong magnetic field showed crystallographic texture but not morphological, so the microstructure did not show any anisotropy. The highest Lotgering factor (0.85) was measured for the ceramics made by electrophoretic deposition and sintered at 1500 °C.  相似文献   

7.
The microstructures of as-sintered and creep tested polycrystalline mullite and mullite reinforced with 5 vol.% nano-sized SiC particles have been characterized by scanning and transmission electron microscopy. The dislocation densities after tensile creep testing at 1300 and 1400 °C were virtually unchanged as compared to the as-sintered materials which indicates diffusion-controlled deformation. Mullite matrix grain boundaries bending around intergranular SiC particles suggest that grain boundary pinning, in addition to a reduced mullite grain size, contributed to the increased creep resistance of the mullite/5 vol.% SiC nanocomposite. Both materials showed pronounced cavitation at multi-grain junctions after creep testing at 1400 °C which suggests that unaccommodated grain boundary sliding, facilitated by softening of the intergranular glass, occurred at this temperature. This is consistent with the higher stress exponents at 1400 °C.  相似文献   

8.
《Ceramics International》2017,43(16):13765-13771
Microstructural evolution on sintering of porcelain powder compacts using microwave radiation was compared with that in conventionally sintered samples. Using microwaves sintering temperature was reduced by ~ 75 °C and dwell time from 15 min to 5 min while retaining comparable physical properties i.e. apparent bulk density, water absorption to conventionally sintered porcelain. Porcelain powder absorbed microwave energy above 600 °C due to a rapid increase in its loss tangent. Mullite and glass were used as indicators of the microwave effect: mullite produced using microwaves had a nanofibre morphology with high aspect ratio (~ 32 ± 3:1) believed associated with a vapour-liquid-solid (VLS) formation mechanism not previously reported. Microwaves also produced mullite with different chemistry having ~ 63 mol% alumina content compared to ~ 60 mol% alumina in conventional sintered porcelain. This was likely due to accelerated Al+3 diffusion in mullite under microwave radiation. Liquid glass was observed to form at relatively low temperature (~ 900–1000 °C) using microwaves when compared to conventional sintering which promoted the porcelains ability to absorb them.  相似文献   

9.
Mesoporous submicron α?Al2O3 green compacts were fabricated using slip casting of ultrafine alumina powders. The pre-sintered samples were sintered in air atmosphere at 1300 °C, 1350 °C, 1400 °C, and 1500 °C to obtain a variety of grain morphologies namely submicron equiaxed and micro rod structures. The resulting grain diameters lie between ~ 270 nm and ~ 1590 nm and total porosity fraction between 0.05% and 13%. The room temperature flexural strength (σ) evaluations and fractography analyses of sintered alumina samples were performed. It was observed that the total porosity fraction dictates the flexural strength as compared to grain diameter. Further, it was found that the flexural strength exhibited a decreasing trend for an increase in the total porosity fraction, and proved to be a better effective parameter than open porosity fraction. The fractography analyses suggest that samples sintered at 1300 °C and 1350 °C predominantly underwent intergranular fracture, while those sintered at 1400 °C and 1500 °C underwent a mixture of intergranular and transgranular fracture.  相似文献   

10.
High purity calcined carbonaceous kaolin and α-Al2O3 powders were employed to prepare porous mullite ceramics (Sample A) using graphite as pore former with the reaction sintering method. For the purpose of comparison, porous mullite ceramics (Sample B) was also fabricated from the uncalcined carbonaceous clay incorporated with α-Al2O3 powders. Mullitization in the two samples was both nearly complete at 1500 °C, despite the fact that calcination of the clay remarkably depressed mullitization and promoted the formation of glass phase. The Sample A sintered at 1500 °C fractured mainly in an intergranular way, while the Sample B mainly underwent transgranular fracture. The experimental results revealed that densification behavior/open porosity of the Sample A was far more sensitive to sintering temperature. The pore size of the Sample A as well as the Sample B sintered at 1500 °C was in a narrower range of 0.3–5 μm.  相似文献   

11.
《Ceramics International》2016,42(9):11104-11117
Mullite–zirconia composites were fabricated by reaction sintering of ZrSiO4 and α-Al2O3 using conventional heating and microwave processing. The powder mixtures were prepared from sub-micron zircon powders with three different particle sizes and CIPed as coin shaped samples. The samples sintered both in a muffle furnace and microwave furnace. The open porosities, bulk and true densities were measured. Phase transformations were characterized by X-ray diffraction and microstructures were evaluated by scanning electron microscopy. The effects of zircon particle size on the in-situ transformation system and mullitization was evaluated for both methods. As a result, decreasing zircon particle size decreases the in-situ transformation temperature for 25 °C (1575 °C) in conventional heating. Microwave assisted sintering (MAS) lowers the transformation temperature at least 50 °C by lowering the activation energy more efficiently and gives better densification than conventional sintering. Furthermore, milling also produces structures having finer mullite grains.  相似文献   

12.
A kaolin containing muscovite and quartz (K-SZ) and a pure kaolin (K-SX) with the addition of potassium feldspar, K2SO4 and quartz, respectively, were used to investigate the influences of muscovite and quartz on the formation of mullite from kaolinite in the temperature range 1000–1500 °C. In K-SZ formation of mullite began at 1100 °C, and in K-SX at 1000 °C. In K-SZ quartz accelerated the formation of cristobalite and restrained the reaction of mullite and silica. Muscovite in K-SZ acted as a fluxing agent for silica and mullite before 1400 °C and accelerated the formation of cristobalite. The FTIR band at 896.8 cm 1 was used to monitor the formation of orthorhombic mullite.  相似文献   

13.
《Ceramics International》2016,42(3):3836-3848
The effects of applied pressure and temperature during spark plasma sintering (SPS) of additive-containing nanocrystalline silicon carbide on its densification, microstructure, and mechanical properties have been investigated. Both relative density and grain size are found to increase with temperature. Furthermore, with increase in pressure at constant temperature, the relative density improves significantly, whereas the grain size decreases. Reasonably high relative density (~96%) is achieved on carrying out SPS at 1300 °C under applied pressure of 75 MPa for 5 min, with a maximum of ~97.7% at 1500 °C under 50 MPa for 5 min. TEM studies have shown the presence of an amorphous phase at grain boundaries and triple points, which confirms the formation of liquid phase during sintering and its significant contribution to densification of SiC at relatively lower temperatures (≤1400 °C). The relative density decreases on raising the SPS temperature beyond 1500 °C, probably due to pores caused by vaporization of the liquid phase. Whereas β-SiC is observed in the microstructures for SPS carried out at temperatures ≤1500 °C, α-SiC evolves and its volume fraction increases with further increase in SPS temperatures. Both hardness and Young׳s modulus increase with increase in relative density, whereas indentation fracture toughness appears to be higher in case of two-phase microstructure containing α and β-SiC.  相似文献   

14.
The densification of hot-pressed ZrN ceramics doped with Zr or Ti have been investigated at 1500–1700 °C. It is shown that either Zr or Ti additive can facilitate the densification process. ZrN with 20 mol% Zr or Ti (named ZNZ and ZNT) sintered at 1700 °C can achieve above 98% relative densities whereas densification temperature up to 2000 °C is necessary for pure ZrN. The densification improvements are attributed to solid solution of Zr or Ti into ZrN to form non-stoichiometric ZrN1?x or (Zr, Ti)N1?x. The microstructures and mechanical properties of ZNZ and ZNT samples have been examined. Large grain size and flat fracture surface existed in ZNT sample sintered at 1700 °C, which lead to poor toughness as low as 2.3 MPa m1/2. On the contrary, the fracture toughness of ZNZ sample sintered at 1700 °C was up to 5.9 MPa m1/2, attributed to fine and uniform grain size distribution.  相似文献   

15.
Heterogeneous precipitation method has been used to produce 5 vol% SiC–Al2O3 powder, from aqueous suspension of nano-SiC, aqueous solution of aluminium chloride and ammonia. The resulting gel was calcined at 700°C. Nano-SiC–Al2O3 composites were densified using spark plasma sintering (SPS) process by heating to a sintering temperature at 1350, 1400, 1450, 1500 and 1550°C, at a heating rate of 600 °/min, with no holding time, and then fast cooling to 600°C within 2–3 min. High density composites could be achieved at lower sintering temperatures by SPS, as compared with that by hot-press sintering process. Bending strength of 5 vol% SiC–Al2O3 densified by SPS at 1450°C reached as high as 1000 MPa. Microstructure studies found that the nano-SiC particles were mainly located within the Al2O3 grains and the fracture mode of the nanocomposites was mainly transgranular fracture.  相似文献   

16.
《Ceramics International》2016,42(4):4819-4826
Porous mullite supports are firstly fabricated by casting and reaction sintering based on kyanite with Al(OH)3 as porogenic agent. The effects of composition and sintering temperature on phase evolution, microstructure, apparent porosity, pore size distribution, linear shrinkage, gas permeation flux and mechanical property of supports are systematically investigated. Results show that the mullitization of kyanite generates needle-like mullite crystals, which form skeleton structures and improve the apparent porosity and strength of supports. Al(OH)3 addition not only promotes the formation of needle-like mullite but also enhances the apparent porosity of supports. Temperature promotes the development of mullite, from 1450 to 1500 °C, the amount and size of needle-like mullite crystals increase, ≥1500 °C, they reveal columnar morphology. The support prepared with kyanite+40 wt%Al(OH)3 sintered at 1500–1550 °C exhibits high apparent porosity, good gas permeation flux, excellent mechanical performance and interlocked network structure composed of well development needle-like mullite.  相似文献   

17.
Using citric acid–nitrate process, La and Cr co-doped A-site deficient SrTiO3 (LSTC) materials were synthesized. The single-phase perovskite structure of LSTC materials can be obtained in airy atmosphere when the dopant content of chromium does not exceed 20 mol%. The LSTC material has excellent chemical compatibility with yttria-stabilized zirconia (YSZ) at 1400 °C. The particle diameters of LSTC powders calcined at 800 °C are all less than 60 nm. The LSTC pellet sintered in air at 1400 °C for 5 h shows a highly densified microstructure composed of polyhedral grains on a micron scale. At 800 °C, the conductivity of LSTC20 pellet is 1.96×10?3 S/cm in static air. The conduction activation energy of LSTC20 pellet is calculated to be 0.33 eV in the temperature range of 550–800 °C. The LSTC can be considered as a potential candidate anode material for SOFC with YSZ as electrolyte, but its conductivity needs to be further improved.  相似文献   

18.
In the present work, the sintering behaviour of HA particles prepared via the wet precipitation method (HAp) and wet mechanochemical technique (HAwm) was investigated. The sintering behaviour of a commercial HA powder (HAc) was also studied for comparison purpose. All the three powders were characterised in terms of particle size, Ca/P ratio and crystal size. Green samples were prepared and sintered in air at temperatures ranging from 1000 °C to 1400 °C. The sintered bodies were studied in terms of the phase stability, relative density, Young's modulus, Vickers hardness, fracture toughness and grain size. The results indicated that HAwm samples suffered phase decomposition while the HAp and HAc sintered samples showed no phase disruption throughout the temperature range employed. The HAp samples exhibited the overall best densification and properties when compared to the HAc and HAwm samples. Furthermore, the results showed that mechanical properties of sintered samples were governed by both the bulk density and the grain size.  相似文献   

19.
The creep deformation of the ultra-high temperature ceramic composite ZrB2–20%SiC at temperatures from 1400 to 1700 °C was studied by a micromechanical mode in which the real microstructure was adopted in finite element simulations. Based on the experiment results of the change of activation energy with respect to the temperature, a mechanism shift from diffusional creep-control for temperatures below 1500 °C to grain boundary sliding-control for temperatures above 1500 °C was concluded from simulations. Also, the simulation results revealed the accommodation of grain rotation and grain boundary sliding by grain boundary cavitation for creep at temperatures above 1500 °C which was in agreement with experimental observations.  相似文献   

20.
For the first time orthorhombic mullite nanoparticles (12 nm) have been synthesized via the co-precipitation technique using mixture of sodium aluminate and sodium silicate solutions as monophasic salts at low annealing temperature 1000 °C. The AC and DC electrical properties of the sintered mullite ceramics were investigated. The results indicated the precursor directly transformed to 3:2 molar ratio orthorhombic mullite. Meanwhile, the surface area of the produced o-mullite at 1000 °C was 15.1 m2/g which increased to 37.3 m2/g with addition of CTAB as a cationic surfactant. TEM images investigated that the microstructure was changed from rod-like shape to roughly spherical shape with addition of surfactant. The DC electrical resistivity of mullite sample sintered at 1600 °C was 16 times greater than that sintered at 1300 °C. The minimum dielectric loss value of 0.014 was obtained at 1600 °C sintering temperature at 1.5 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号