首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extending livestock grazing to the steep slopes has led to unstable grazing systems in the East African Highlands, and new solutions and approaches are needed to ameliorate the current situation. This work was aimed at studying the effect of livestock grazing on plant attributes and hydrological properties. The study was conducted from 1996 to 2000 at the International Livestock Research Institute at Debre Ziet Research Station. Two sites were selected: one at 0–4% slope, and the other at 4–8% slope. The treatments were: (1) no grazing (control); (2) light grazing, 0.6 animal unit months per hectare (aum/ha); (3) moderate grazing, 1.8 aum/ha; (4) heavy grazing, 3.0 aum/ha; (5) very heavy grazing, 4.2 aum/ha; (6) initially plowed and continuously very heavily grazed, 4.2 aum/ha. The result showed that species richness, infiltration rate, bare ground, and soil loss significantly varied with grazing pressure. Species richness was higher in grazed plots compared to nongrazed plots. Biomass yield improved on heavily grazed plots as cow dung accumulated over years. Cynodon dactylon plant species persisted with livestock grazing pressure in both sites. Infiltration rate improved and soil erosion declined in all treatments after the first year.  相似文献   

2.
Understanding the problems of grazing land in vertisol areas and seeking long-lasting solutions is the central point where mixed crop livestock is the second stay for the majority of the population. In order to understand this, the current study was conducted at two sites, one with 0–4% slope and the other with 4–8% slope at Ginchi watershed, 80 km west of Addis Ababa, Ethiopia. The specific objectives of the study were to quantify changes in plant species richness, biomass, plant cover, and soil physical and hydrological properties. The grazing regimes were: moderate grazing (regulated), heavy grazing (free grazing), and no grazing (closed to any grazing), which was considered the control treatment. The results showed that the biomass yield in nongrazed plots was higher than in the grazed plots. However, the biomass yield in grazed plots improved over the years. Species richness and percentage of dominant species attributes were better in medium grazed plots than the other treatments. Soil compaction was higher in very heavily grazed plots than in nongrazed and medium-grazed plots. In contrast to that, the soil water content and infiltration rate were better in nongrazed plots than in grazed plots. Soil loss in grazed plots decreased with the increase of biomass yields and as the soil was more compacted by livestock trampling during the wet season. Finally since the medium stocking rate is better in species richness and plant attributes, and lies between nongrazed and heavily grazed plots in the rest of the measured parameters, it could be the appropriate stocking rate to practice by the smallholder farmer.  相似文献   

3.
Applying the threshold concept to rangeland management is an important challenge in semi-arid and arid regions. Threshold recognition and prediction is necessary to enable local pastoralists to prevent the occurrence of an undesirable state that would result from unsustainable grazing pressure, but this requires a better understanding of the pastoralists’ perception of vegetation threshold changes. We estimated plant species cover in survey plots along grazing gradients in steppe and desert-steppe areas of Mongolia. We also conducted interviews with local pastoralists and asked them to evaluate whether the plots were suitable for grazing. Floristic composition changed nonlinearly along the grazing gradient in both the desert-steppe and steppe areas. Pastoralists observed the floristic composition changes along the grazing gradients, but their evaluations of grazing suitability did not always decrease along the grazing gradients, both of which included areas in a post-threshold state. These results indicated that local pastoralists and scientists may have different perceptions of vegetation states, even though both of groups used plant species and coverage as indicators in their evaluations. Therefore, in future studies of rangeland management, researchers and pastoralists should exchange their knowledge and perceptions to successfully apply the threshold concept to rangeland management.  相似文献   

4.
We investigated the influence of long-term (56 years) grazing on organic and inorganic carbon (C) and nitrogen (N) contents of the plant–soil system (to 90 cm depth) in shortgrass steppe of northeastern Colorado. Grazing treatments included continuous season-long (May–October) grazing by yearling heifers at heavy (60–75% utilization) and light (20–35% utilization) stocking rates, and nongrazed exclosures. The heavy stocking rate resulted in a plant community that was dominated (75% of biomass production) by the C4 grass blue grama (Bouteloua gracilis), whereas excluding livestock grazing increased the production of C3 grasses and prickly pear cactus (Opuntia polycantha). Soil organic C (SOC) and organic N were not significantly different between the light grazing and nongrazed treatments, whereas the heavy grazing treatment was 7.5 Mg ha–1 higher in SOC than the nongrazed treatment. Lower ratios of net mineralized N to total organic N in both grazed compared to nongrazed treatments suggest that long-term grazing decreased the readily mineralizable fraction of soil organic matter. Heavy grazing affected soil inorganic C (SIC) more than the SOC. The heavy grazing treatment was 23.8 Mg ha–1 higher in total soil C (0–90 cm) than the nongrazed treatment, with 68% (16.3 Mg ha–1) attributable to higher SIC, and 32% (7.5 Mg ha–1) to higher SOC. These results emphasize the importance in semiarid and arid ecosystems of including inorganic C in assessments of the mass and distribution of plant–soil C and in evaluations of the impacts of grazing management on C sequestration.  相似文献   

5.
In July 2000, a 490-ha wildfire burned a portion of a long-term grazing study that had been established in 1924 at the US Sheep Experiment Station north of Dubois, Idaho, USA. Earlier vegetation measurements in this tall threetip sagebrush (Artemisia tripartita spp. tripartita) bunchgrass plant community documented significant changes in vegetation due to grazing and the timing of grazing by sheep. A study was initiated in May 2001 using 12 multiscale modified Whittaker plots to determine the consequences of previous grazing practices on postfire vegetation composition. Because there was only one wildfire and it did not burn all of the original plots, the treatments are not replicated in time or space. We reduce the potential effects of psuedoreplication by confining our discussion to the sample area only. There were a total of 84 species in the sampled areas with 69 in the spring-grazed area and 70 each in the fall- and ungrazed areas. Vegetation within plots was equally rich and even with similar numbers of abundant species. The spring-grazed plots, however, had half as much plant cover as the fall- and ungrazed plots and the spring-grazed plots had the largest proportion of plant cover composed of introduced (27%) and annual (34%) plants. The fall-grazed plots had the highest proportion of native perennial grasses (43%) and the lowest proportion of native annual forbs (1%). The ungrazed plots had the lowest proportion of introduced plants (4%) and the highest proportion of native perennial forbs (66%). The vegetation of spring-grazed plots is in a degraded condition for the environment and further degradation may continue, with or without continued grazing or some other disturbance. If ecosystem condition was based solely on plant diversity and only a count of species numbers was used to determine plant diversity, this research would have falsely concluded that grazing and timing of grazing did not impact the condition of the ecosystem.  相似文献   

6.
Summary This study examines the effects of traditional sedentary grazing on soils in the southern guinea savanna ecosystem in Nigeria. The characteristics of soil in grazed plots are compared with those of similar soil in ungrazed plots in a savanna forest reserve in a nearby locality, in order to infer the effects of grazing. In the 0–10 cm layer of the soil, organic carbon, total nitrogen, exchangeable calcium, magnesium, potassium, sodium, cation exchange capacity and available phosphorus levels are significantly lower in the grazed plots. Decline in the organic carbon and nutrient levels of the grazed plots is mainly due to soil exposure resulting from grazing and savanna burning and the attendant processes of accelerated organic matter decomposition and nutrient loss through leaching and erosion. Low soil nutrient levels in the grazed plots will reduce primary production and hence the rate of herbage production for livestock. It could also lead to some adverse ecological changes in the ecosystem with the disappearance of certain plant species. The ecosystem consequently becomes less diverse and resilient as soil nutrient status becomes increasingly impoverished. It is suggested that herdsmen should practise rotational grazing and that livestock should be fed with a supplementary fodder of legumes, such as Gliricidia sepiumand Leucaena leucocephalaplanted in natural grazing areas, in order to minimise the problems of overgrazing which are frequently experienced during the dry season. Dr A.O. Aweto is a Senior Lecturer in Biogeography in the Department of Geography at the University of Ibadan, and Mr D.O. Adejumobi is a geographer serving on the Nigerian National Youth Service Corps.  相似文献   

7.
Abstract: A method was developed to characterize ecological integrity of riparian sites based on the abundance of hydric species. This wetland index can be calculated with species data, or with community type data as performed here. Classified riparian community types were used to describe vegetation at 14 livestock exclosures and adjacent grazed areas. Community type wetland index values were generated and used to calculate site wetland index values. It was hypothesized that removal of livestock would result in higher wetland index values because of release from herbivory and decreased physical disturbance of vegetation, streambanks, and soil. The wetland index for exclosures was about 12% higher than grazed sites; differences were statistically significant (p < 0.01) based on paired t‐tests. The increase in hydric vegetation after livestock exclusion may have contributed to the greater bank stability (p = 0.002) and smaller width‐to‐depth ratio (p = 0.005) in exclosures. Challenges were encountered in using community types to describe and compare site vegetation, which could be avoided with species data collection. The wetland index can be a tool to monitor sites over time, compare sites with similar environments, or compare sites for which environmental differences can be accounted.  相似文献   

8.
The effects of grazing by feral horses on vegetation and dune topography at Assateague Island National Seashore were investigated using color-infrared imagery, lidar surveys, and field measurements. Five pairs of fenced and unfenced plots (300 m2) established in 1993 on sand flats and small dunes with similar elevation, topography, and vegetation cover were used for this study. Color-infrared imagery from 1998 and field measurements from 2001 indicated that there was a significant difference in vegetation cover between the fenced and unfenced plot-pairs over the study period. Fenced plots contained a higher percentage of vegetation cover that was dominated by American beachgrass (Ammophila breviligulata). Lidar surveys from 1997, 1999, and 2000 showed that there were significant differences in elevation and topography between fenced and unfenced plot-pairs. Fenced plots were, on average, 0.63 m higher than unfenced plots, whereas unfenced plots had generally decreased in elevation after establishment in 1993. Results demonstrate that feral horse grazing has had a significant impact on dune formation and has contributed to the erosion of dunes at Assateague Island. The findings suggest that unless the size of the feral horse population is reduced, grazing will continue to foster unnaturally high rates of dune erosion into the future. In order to maintain the natural processes that historically occurred on barrier islands, much larger fenced exclosures would be required to prevent horse grazing.  相似文献   

9.
Effect of grazing and changing climate on vegetation composition of alpine pasture at Tungnath, Garhwal Himalaya was observed. Growth form pattern and phytosociological attributes were analyzed during 1988 under grazed (exposed to extensive grazing) and ungrazed (protected from grazing) conditions. These observations were repeated during 1998. It was observed that number of early growing species and long vegetative growth cycle species had increased at both sites in 1998 in comparison to 1988. Further, some species, viz., Poa alpina, Polygonum spp., Ranunculus hirtellus, Anemone spp., are predominantly found near the timberline-subalpine region. These species are less palatable and were present at both sites with higher dominance (TBC) and niche width in 1998 indicating wide distribution of the species along an altitudinal gradient. These observations indicated the migration of these species towards upper slopes of alpine. Species diversity was also higher after ten years. However, it is clear that climatic changes alone are not responsible for these vegetational shifts. In fact, human-induced changes are the main reason for habitat destruction and changes in vegetation composition of the alpine region of Garhwal Himalaya. Before final conclusions can be made, long-term studies on vegetation composition and changes are needed, especially in Himalayan region.  相似文献   

10.
ABSTRACT: Efforts by state and federal agencies to develop standards and guidelines for protecting and enhancing water quality on grazing lands have led to suggestions that grazed stubble height criteria could be used to determine when cattle should be removed from a specific pasture or grazing area. Until recently only indirect scientific evidence from agronomy and laboratory studies gave support to the stubble height concept. Consequently, a grazing study was initiated on a Montana ranch in 1997 to determine the reduction in overland sediment achieved by grazing a pasture to a predetermined stubble height. Treatments consisted of 7 cm (3 in) grazed, 7 cm (3 in) clipped or mowed, 15 cm (6 in) grazed; 15 cm (6 in) clipped and untreated or natural forage plant height. The five treatments were used in a two‐year trial spanning 1997 to 1999. At the conclusion of this study the magnitude of sediment production was related to the number of intense rain events during the March through June period rather than total precipitation. There was a significant year effect in terms of sediment accumulation (P < 0.01) but no year by treatment effect (P = 0.11). Even though a significant difference in sediment accumulation was detected between the shorter and taller stubble heights (P = 0.04) in both 1998 and 1999, the difference could not be explained by grazed stubble height alone. Close grazing (7 cm stubble) consistently ranked lowest in sediment production (P < 0.01) among all treatments, including the ungrazed control. These results suggest that changes in plant community structure and microtopographic caused by grazing influence sediment entrapment (retention) on hillslopes more than those caused by plant height.  相似文献   

11.
Some effects of domestic sheep grazing on vegetation and soils were measured at four sites in the western Mojave Desert. Although sheep have grazed the Mojave Desert for the past 50–100 years, the effects of grazing on the desert ecosystem are largely unknown.The results reflect only short-term effects of grazing, because fenced control areas were not available for study. Heavy grazing caused a 60% reduction in the above-ground biomass under creosote bushes (Larrea tridentata), and sheep trampling caused an increase in soil strength and decreased intershrub annual densities 24 and 28% in two areas. The average area per individual (cover) of burrobush (Ambrosia dumosa) decreased 16–19% and the cover of spiny hop-sage (Grayia spinosa) decreased 29% under grazing pressure. The volumes of individual Ambrosia were 21 and 65% less in two heavily grazed areas than in two lightly grazed areas; the volume of goldenhead (Acamptopappus sphaerocephalus) was 68% less in one heavily grazed area.These changes indicate that the range quality of the Mojave Desert is deteriorating under sheep grazing pressures. Trampling reduces annual cover and disrupts the soil surface, thus promoting wind erosion. The loss of annual biomass and shrub cover should adversely affect reptiles and rodents by removing food sources and protection. Soil strength increases may retard future growth of annuals, further contributing to erosion and food source losses. Studies should be initiated to determine the long-term effects of grazing in the Mojave Desert.  相似文献   

12.
We examined long-term (10 years) meadow plant community responses to (1) livestock grazing under riparian grazing utilization limits; (2) suspension of livestock grazing; and (3) meadow site wetness and precipitation on the Inyo National Forest, California. Observed trends in meadow plant species richness, diversity, and frequency of soil stabilizing species were not significantly different between grazed (N = 16) and non-grazed (N = 9) study sites (P > 0.12 in all cases). Modest increases in richness and diversity were observed over the study period, but frequency of soil stabilizing species was constant. These results suggest that riparian conservation grazing strategies implemented during the study period neither degraded nor hampered recovery of meadow plant community conditions relative to non-grazed conditions. Meadow site wetness was negatively correlated to richness (P < 0.01) and diversity (P < 0.01), but was positively correlated to soil stabilization (P = 0.02). Precipitation was not a significant predictor for plant community responses.  相似文献   

13.
Basic information on where nonnative plant species have successfully invaded is lacking. We assessed the vulnerability of 22 vegetation types (25 sets of four plots in nine study areas) to nonnative plant invasions in the north–central United States. In general, habitats with high native species richness were more heavily invaded than species-poor habitats, low-elevation areas were more invaded than high-elevation areas, and riparian zones were more invaded than nearby upland sites. For the 100 1000-m2 plots (across all vegetation types), 50% of the variation in nonnative species richness was explained by longitude, latitude, native plant species richness, soil total percentage nitrogen, and mean maximum July temperature (n = 100 plots; P < 0.001). At the vegetation-type scale (n = 25 sets of four 1000-m2 plots/type), 64% of the variation in nonnative species richness was explained by native plant species richness, elevation, and October to June precipitation (P < 0.001). The foliar cover of nonnative species (log) was strongly positively correlated with the nonnative species richness at the plot scale (r = 0.77, P < 0.001) and vegetation-type scale (r = 0.83, P < 0.001). We concluded that, at the vegetation-type and regional scales in the north–central United States, (1) vegetation types rich in native species are often highly vulnerable to invasion by nonnative plant species; (2) where several nonnative species become established, nonnative species cover can substantially increase; (3) the attributes that maintain high native plant species richness (high light, water, nitrogen, and temperatures) also help maintain nonnative plant species richness; and (4) more care must be taken to preserve native species diversity in highly vulnerable habitats.  相似文献   

14.
The structure and advancement of woody vegetation was studied in a semi-arid rangeland of southern Ethiopia under three land-use systems (communal land, a government ranch and a traditional grazing reserve enclosure) and along a distance gradient (near, middle and far) from water sources. A total of 54 woody plant species were identified. Based on the subjective opinions of the pastoralists, 85% of the identified woody plants have forage values to livestock. Cadaba farinsoa, Ormocarpum trichocarpum, Rhus natalensis, Acacia brevispica, Cordia gharaf and Hibiscus sparseaculeatus were reported to have fair to good palatability. Tree equivalent (TE) density of all woody plants combined was greater (P <0.01) in the government ranch (1) 188 TE ha(-1)) and the communal land (1083 TE ha(-1)) than in the traditional grazing reserve (419 TE ha(-1)), whereas this did not vary significantly (P >0.05) along the distance gradient from water. The most important encroaching woody plant species in the study areas were in descending order: Commiphora africana, Acacia drepanolobium, A. brevispica, Acacia. tortilis, Grewia tembensis and Lannea floccosa. The density of individual encroaching woody plant species along the distance gradient from water was not consistent. All encroaching woody species had the highest TE density in the communal land. The prevalence of these species followed the pattern of intensity of use within the communal grazing area. Most of the woody species had the highest abundance in the height class >0-2m regardless of land use and distance gradient from water. This study investigated the advance of severe woody encroachment in the communal and government sites as well as along the distance gradient from water. Some of the important contributing factors that can be suggested are heavy grazing pressure (in both the communal and government sites), expansion of cultivation and reduced mobility of livestock due to settlement of the pastoralists in the communal land.  相似文献   

15.
Medusahead (Taeniatherum caput-medusae (L.) Nevski) is an exotic annual grass invading rangelands in the western United States. Medusahead is a serious management concern because it decreases biodiversity, reduces livestock forage production, and degrades the ecological function of rangelands. Despite the obvious importance of ranchers as partners in preventing and managing medusahead in rangelands, little is known about their perceptions and behaviors concerning medusahead management. We present the results of a survey of ranchers operating on sagebrush steppe rangeland in a three-county area in southeast Oregon encompassing over 7.2 million ha. The primary objective of this research was to determine if the presence of medusahead on a ranch influenced its operator’s perceptions and behaviors concerning invasive plant control and prevention. Ranchers operating on medusahead-infested rangeland were more likely to indicate increased awareness and concern about medusahead and the potential for its continued expansion. Ranchers operating on rangeland invaded by medusahead were also more likely to indicate use of measures to prevent the spread of medusahead and other invasive plants on rangeland, interest in educational opportunities concerning invasive annual grass management, and plans for controlling invasive annual grasses in the future. This study revealed an alarming trend in which individuals are less likely to implement important prevention measures and participate in education opportunities to improve their knowledge of invasive plants until they directly experience the negative consequences of invasion. Information campaigns on invasive plants and their impacts may rectify this problem; however, appropriate delivery methods are critical for success. Web- or computer-based invasive plant information and tools were largely unpopular among ranchers, whereas traditional forms of information delivery including brochures/pamphlets and face-to-face interaction were preferred. However, in the future web- or computer-based information may become more popular as ranchers become more familiar with them.  相似文献   

16.
Human disturbance in the western Mojave Desert takes many forms. The most pervasive are livestock grazing and off-highway vehicle use. Over the past few decades several areas within this region have been fenced to preclude human disturbance. These areas provide opportunities to study the impact of human activities in a desert ecosystem. This paper documents the response of plant and small mammal populations to fencing constructed between 1978 and 1979 at the Desert Tortoise Research Natural Area, Kern County, California. Aboveground live annual plant biomass was generally greater inside than outside the fenced plots during April 1990, 1991, and 1992. The alien grassSchismus barbatus was a notable exception, producing more biomass in the unprotected area. Forb biomass was greater than that of alien annual grasses inside the fence during all three years of the study. Outside the fence, forb biomass was significantly higher than that of alien grasses only during spring 1992. Percent cover of perennial shrubs was higher inside the fence than outside, while no significant trend was detected in density. There was als more seed biomass inside the fence; this may have contributed to the greater diversity and density of Merriam's kangaroo rats (Dipodomys merriami), long-tailed pocket mice (Chaetodipus formosus), and southern grasshopper mice (Onychomys torridus) in the protected area. These results show that protection from human disturbance has many benefits, including greater overall community biomass and diversity. The significance and generality of these results can be further tested by studying other exclosures of varying age and configurations in different desert regions of the southwestern United States.  相似文献   

17.
18.
3 and C4 plant species consumed by animals. Sheep sample vegetation continuously throughout a year, and as their wool grows it integrates and stores information about their diet. In subtropical and tropical rangelands the majority of grass species are C4. Since sheep prefer to graze, and their wool is an isotopic record of their diet, we now have the potential to develop a high resolution index to the availability of grass from a sheep's perspective. Isotopic analyses of wool suggest a new direction for monitoring grazing and for the reconstruction of past vegetation changes, which will make a significant contribution to traditional rangeland ecology and management. It is recommended that isotopic and other analyses of wool be further developed for use in rangeland monitoring programs to provide valuable feedback for land managers.  相似文献   

19.
In the western United States, livestock grazing often co-exists with recreation, cultural resource management and biodiversity protection on federal and state protected rangelands as well as on many local government open space areas. While the value of livestock grazing for managing rangeland vegetation to reduce fire fuel loads and improve wildlife habitat is increasingly recognized by resource management professionals, public concerns, and conflict between recreationist and livestock have led to reductions in public land grazing. Traditional public input methods yield a constrained picture of people’s attitudes toward cows and public land grazing. Public meetings, hearings, and surveys, the most commonly used mechanisms for public land managers to solicit public opinion, tend to foster participation of organized special interests or, in the case of surveys, focus on a specific topic. General public input is limited. This study explored the use of personal photography in social media to gain insight into public perceptions of livestock grazing in public spaces. Key findings of this study include that many recreationist in grazed San Francisco Bay Area parks shared views, interests, and concerns about cows and grazing on the photo-sharing website, FlickrTM that seldom show up at a public meeting or in surveys. Results suggest that social media analysis can help develop a more nuanced understanding of public viewpoints useful in making decisions and creating outreach and education programs for public grazing lands. This study demonstrates that using such media can be useful in gaining an understanding of public concerns about natural resource management.  相似文献   

20.
The rationale for this study came from observing grazing dairy cattle dropping freshly harvested plant material onto the soil surface, hereafter called litter-fall. The Intergovernmental Panel on Climate Change (IPCC) guidelines include NO emissions during pasture renewal but do not consider NO emissions that may result from litter-fall. The objectives of this study were to determine litter-fall rates and to assess indicative NO emission factors (EFs) for the dominant pasture species (perennial ryegrass [ L.] and white clover [ L.]). Herbage was vacuumed from intensively managed dairy pastures before and after 30 different grazing events when cows (84 cows ha) grazed for 24 h according to a rotational system; the interval between grazing events ranged from 21 to 30 d. A laboratory incubation study was performed to assess potential EF values for the pasture species at two soil moisture contents. Finely ground pasture material was incubated under controlled laboratory conditions with soil, and the NO emissions were measured until rates returned to control levels. On average, pre- and postgrazing dry matter yields per grazing event were 2516 ± 636 and 1167 ± 265 kg DM ha (±SD), respectively. Pregrazing litter was absent, whereas postgrazing fresh and senesced litter-fall rates were 53 ± 24 and 19 ± 18 kg DM ha, respectively. Annually, the rotational grazing system resulted in 12 grazing events where fresh litter-fall equaed to 16 kg N ha yr to the soil. Emission factors in the laboratory experiment indicated that the EF for perennial ryegrass and white clover ranged from 0.7 to 3.1%. If such EF values should also occur under field conditions, then we estimate that litter-fall induces an NO emission rate of 0.3 kg NO ha yr. Litter-fall as a source of NO in grazed pastures requires further assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号