首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, we designed an inventive paradigm in nanomedicine—drug-free macromolecular therapeutics (DFMT). The ability of DFMT to induce apoptosis is based on biorecognition at cell surface, and crosslinking of receptors without the participation of low molecular weight drugs. The system is composed of two nanoconjugates: a bispecific engager, antibody or Fab’ fragment—morpholino oligonucleotide (MORF1) conjugate; the second nanoconjugate is a multivalent effector, human serum albumin (HSA) decorated with multiple copies of complementary MORF2. Here, we intend to demonstrate that DFMT is a platform that will be effective on other receptors than previously validated CD20. We appraised the impact of daratumumab (DARA)- and isatuximab (ISA)-based DFMT to crosslink CD38 receptors on CD38+ lymphoma (Raji, Daudi) and multiple myeloma cells (RPMI 8226, ANBL-6). The biological properties of DFMTs were determined by flow cytometry, confocal fluorescence microscopy, reactive oxygen species determination, lysosomal enlargement, homotypic cell adhesion, and the hybridization of nanoconjugates. The data revealed that the level of apoptosis induction correlated with CD38 expression, the nanoconjugates meet at the cell surface, mitochondrial signaling pathway is strongly involved, insertion of a flexible spacer in the structure of the macromolecular effector enhances apoptosis, and simultaneous crosslinking of CD38 and CD20 receptors increases apoptosis.  相似文献   

2.
A novel methodology for the efficient synthesis of [2.2.1] heterobicyclic pyroglutamates has been described. The key synthetic steps involve alkylation of amino acid‐derived iminoesters with Baylis‐Hillman bromide, RhCl3‐catalyzed exocyclic olefin isomerization, diastereoselective dihydroxylation, and regioselective lactonization. All the compounds were evaluated for their cytotoxicity using multiple myeloma cancer cell lines RPMI 8226.  相似文献   

3.
Several derivatives containing morpholine/piperidine, anilines, and dipeptides as pending moieties were prepared using s-triazine as a scaffold. These compounds were evaluated for their anticancer activity against two human breast cancer cell lines (MCF-7 and MDA-MB-231), a colon cancer cell line (HCT-116), and a non-tumorigenic cell line (HEK 293). Tamoxifen was used as a reference. Animal toxicity tests were carried out in zebrafish embryos. Most of these compounds showed a higher activity against breast cancer than colon cancer. Compound 3a—which contains morpholine, aniline, and glycylglycinate methyl ester—showed a high level of cytotoxicity against MCF-7 cells with IC50 values of less than 1 µM. This compound showed a much lower level of toxicity against the non-tumorigenic HEK-293 cell line, and in the in vivo studies using zebrafish embryos. Furthermore, it induced cell cycle arrest at the G2/M phase, and apoptosis in MCF-7 cells. On the basis of our results, 3a emerges as a potential candidate for further development as a therapeutic drug to treat hormone receptor-positive breast cancer.  相似文献   

4.
A simple high‐performance liquid chromatography coupled with tandem mass spectrometry method was developed and fully validated to simultaneously determine teriflunomide (TER) and its metabolite 4‐trifluoro‐methylaniline oxanilic acid (4‐TMOA) in human plasma and urine. Merely 50 μL plasma and 20 μL urine were employed in sample preparation using protein precipitation and direct dilution method, respectively. An Agilent Zorbax eclipse plus C18 column was selected to achieve rapid separation for TER and 4‐TMOA within 3 min. Electrospray ionization under multiple reaction monitoring was used to monitor the ion transitions for TER (m/z 269.0 → 159.9), 4‐TMOA (m/z 231.9 → 160.0), internal standard teriflunomide‐d4 (m/z 273.0 → 164.0) and 2‐amino‐4‐trifluoromethyl benzoic acid (m/z 203.8 → 120.1), operating in the negative ion mode. This method proved to have better accuracy and precision over concentration range of 10–5000 ng/mL in plasma as well as 10–10,000 ng/mL in urine. After a full validation, this method was successfully applied in a pharmacokinetic study of teriflunomide sodium and leflunomide in Chinese healthy volunteers.  相似文献   

5.
High-dose chemotherapy combined with autologous transplantation using bone marrow or peripheral blood-derived stem cells (PBSC) is now widely used in the treatment of hematologic malignancies as well as some solid tumors like breast cancer (BC). However, some controversial results were recently obtained in the latter case. The presence of malignant cells in the autograft has been associated with the recurrence of the disease, and purging procedures are needed to eliminate this risk. The aim of this study was to evaluate the potential of the photosensitizer 4,5-dibromorhodamine methyl ester (TH9402), a dibrominated rhodamine derivative, to eradicate multiple myeloma (MM) and BC cell lines, while sparing more than 50% of normal pluripotential blood stem cells from healthy volunteers. The human BC MCF-7 and T-47D and MM RPMI 8226 and NCI-H929 cell lines were used to optimize the photodynamic purging process. Cell concentration and the cell suspension thickness as well as the dye and light doses were varied in order to eventually treat 1-2 L of apheresis. The light source consisted of two fluorescent scanning tubes emitting green light centered about 515 nm. The cellular uptake of TH9402 was measured during the incubation and washout periods and after photodynamic treatment (PDT) using spectrofluorometric analysis. The limiting dilution assay showed that an eradication rate of more than 5 logs is obtained when using a 40 min incubation with 5-10 microM dye followed by a 90 min washout period and a light dose of 5-10 J/cm2 (2.8 mW/cm2) in all cell lines. Agitating the 2 cm thick cell suspension containing 20 x 10(6) cells/mL during PDT was essential for maximal photoinactivation. Experiments on mobilized PBSC obtained from healthy volunteers showed that even more drastic purging conditions than those found optimal for maximal eradication of the malignant cell lines were compatible with a good recovery of hematopoietic progenitors cells. The absence of significant toxicity towards normal hematopoietic stem cells, combined with the 5 logs eradication of cancer cell lines induced by this procedure suggests that TH9402 offers an excellent potential as an ex vivo photodynamic purging agent for autologous transplantation in MM and BC treatment.  相似文献   

6.
Six characteristic di-acetylated lactonic sophorolipids with C16:1, C16:0, C18:0, C18:1, C18:2, and C18:3 fatty acid were obtained from Starmerella bombicola CGMCC 1576. In order to confirm their anticancer activity against human cervical cancer cells and reveal the structure-activity relationships, their anti-proliferation effects on HeLa and CaSki cells were estimated. The cytotoxicity of sophorolipid molecules with different degrees of unsaturation was proved to be influenced by carbon chain length of sophorolipids. The longer the carbon chain length, the stronger the cytotoxicity of sophorolipids. The inhibitory mechanism of a di-acetylated lactonic C18:1 sophorolipid on HeLa cells was investigated. The cells developed many features of apoptosis and cell cycle was blocked at G0 phase and partly at G2 phase. The expression of CHOP and Bip/GRP78 was induced. Caspase-12 and caspase-3 were both activated. However, mitochondrial membrane potential and concentration of cytosolic cytochrome C did not change. The induced apoptosis of HeLa cells was probably triggered through endoplasmic reticulum signaling pathway without involvement of mitochondria. In vivo, 5, 50, and 500 mg/kg lactonic sophorolipids showed 29.90, 41.24, and 52.06 % of inhibition without significant toxicity to tumor-bearing mice, respectively. Our findings may suggest a potential use of sophorolipids in human cervical cancer treatment.  相似文献   

7.
Doxorubicin, a well‐established chemotherapeutic agent, is known to accumulate in the cell nucleus. By using ICP‐MS, we show that the conjugation of two small organometallic rhenium complexes to this structural motif results in a significant redirection of the conjugates from the nucleus to the mitochondria. Despite this relocation, the two bioconjugates display excellent toxicity toward HeLa cells. In addition, we carried out a preliminarily investigation of aspects of cytotoxicity and present evidence that the conjugates disrupt the mitochondrial membrane potential, are strong inhibitors of human Topoisomerase II, and induce apoptosis. Such derivatives may enhance the therapeutic index of the aggressive parent drug and overcome drug resistance by influencing nuclear and mitochondrial homeostasis.  相似文献   

8.
Although some polyphenols are known to possess anticancer activity against different cancer cell lines through induction of apoptosis, the mode of antiproliferative effect of ethyl gallate against human oral squamous carcinoma cell line KB was not studied until now. Therefore, the antiproliferative effect of ethyl gallate was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay in comparison with the reference drug paclitaxel. Generation of reactive oxygen species, mitochondrial membrane potential loss, DNA damage and apoptosis were determined using 2,7-diacetyldichlorofluorescein fluorescence, uptake of rhodamine-123 by mitochondria, comet assay and acridine orange/ethidium bromide dual-dye staining method. Both ethyl gallate and paclitaxel exhibited cytotoxicity in a dose-dependent manner. The 50% inhibitory concentration for ethyl gallate was 30 and 20 μg/mL for paclitaxel. A volume of 50 μg/mL of ethyl gallate was found to be significantly effective (P < 0.05) in controlling the cancer cell proliferation leading to acute apoptosis.  相似文献   

9.
根据拼合原理, 设计并合成了21个未见报道的新的二芳醚基哌嗪类衍生物, 其结构用1H NMR, ESI-MS, HRMS进行了确证, 初步生物活性测定实验证明部分目标化合物具有良好的细胞毒活性. 化合物4i分别对人食管癌(Eca109)细胞株和人鼻咽癌(CNE)细胞株的IC50为7.13和4.54 μmol&#8226;L-1, 与对照品顺铂(DDP)相近. 化合物5d对人鼻咽癌细胞株也表现较好的活性, 其IC50为8.49 μmol&#8226;L-1.  相似文献   

10.
As lanthanide-doped sodium yttrium flouride (NaYF4) nanoparticles have great potential in biomedical applications, their biosafety is important and has attracted significant attention. In the present work, three different sized NaYF4:Eu3+ nanoparticles have been prepared. Liver BRL 3A cell was used as a cell model to evaluate their biological effects. Cell viability and apoptosis assays were used to confirm the cytotoxicity induced by NaYF4:Eu3+ NPs. Apart from the elevated malondialdehyde (MDA), the decrease of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase (CAT) activity indicated reactive oxygen species (ROS) generation, which were associated with oxidative damage. The decrease of mitochondrial membrane potential (MMP) value demonstrated the occurrence of mitochondria damage. Then, release of cytochrome c from mitochondria and activation of caspase-3 confirmed that NaYF4:Eu3+ NPs induced apoptosis was mitochondria damage-dependent.  相似文献   

11.
Recently, a nongenomic cytotoxic component of the chemotherapeutic agent tamoxifen (TAM) has been identified that predominantly triggers mitochondrial events. The present study delineates the intracellular fate of TAM and studies its interaction with a spectrum of cell homeostasis modulators primarily relevant to mitochondria. The subcellular localization of TAM was assessed by confocal fluorescence microscopy. The effect of the modulators on TAM cytotoxicity was assessed by standard MTT assays. Our findings show that in estrogen receptor positive MCF7 breast adenocarcinoma cells and DU145 human prostate cancer cells, TAM largely accumulates in the mitochondria and endoplasmic reticulum, but not lysosomes. Our results further demonstrate that in MCF7, but not in DU145 cells, mitochondrial electron transport chain complex I and III inhibitors exacerbate TAM toxicity with an order of potency of myxothiazol ≥ stigmatellin > rotenone > antimycin A, suggesting a cell-specific cytotoxic interplay between mitochondrial complex I and III function and TAM action.  相似文献   

12.
As lanthanide-doped sodium yttrium flouride(NaYF_4)nanoparticles have great potential inbiomedical applications,their biosafety is important and has attracted significant attention.In the present work,three different sized NaYF_4:Eu~(3+)nanoparticles have been prepared.Liver BRL 3 A cell was used as a cell model to evaluate their biological effects.Cell viability and apoptosis assays were used to confirm the cytotoxicity induced by NaYF_4:Eu~(3+)NPs.Apart from the elevated malondialdehyde(MDA),the decrease of superoxide dismutase(SOD),glutathione peroxidase(GSH-PX)and catalase(CAT)activity indicated reactive oxygen species(ROS)generation,which were associated with oxidative damage.The decrease of mitochondrial membrane potential(MMP)value demonstrated the occurrence of mitochondria damage.Then,release of cytochrome c from mitochondria and activation of caspase-3 confirmed that NaYF_4:Eu~(3+)NPs induced apoptosis was mitochondria damage-dependent.  相似文献   

13.
Two new coordination polymers, namely {[Cu(CPTD)(HCOO)](H_2O)4}n(1, HCPTD= 4?-(4-Carboxyphenyl)-2,2?:6?,2??-terpyridine) and {[Dy_3(NTB)_3(NMF)_2(H_2O)]_n(NMF)_3}n(2,H_3NTB = 4,4?,4??-nitrilotribenzoic acid, NMF = N-methylformamide) have been successfully constructed under solvothermal conditions. The structures of the two complexes have been successfully determined by single-crystal X-ray diffraction. In addition, in vitro antitumor activities of compounds 1 and 2 on three human angioneoplasm cells(MOLP-2, RPMI8226 and MM1 S)were further determined and the results show that the two compounds showed promising activity.  相似文献   

14.
Bisphenol A (BPA) is a chemical substance used in large amounts in the production of epoxy resins, phenolic resins and polycarbonate plastics. Although its toxicity to the female reproductive system has been extensively studied, little is known about the combined toxicity of BPA and its analogues. In this study, the human granulosa cell line KGN was co-exposed to BPA and bisphenol AF (BPAF), and we subsequently examined the effect of these chemicals on cell apoptosis and their mechanism. We found that co-exposure to BPA and BPAF induced intracellular stress in KGN cells, including significantly elevated levels of reactive oxygen species (ROS) and calcium ions (Ca2+). Then, apoptosis and its associated biological events, including increased caspase-3 activity, and decreased Bcl-2/Bax protein expression ratio, were measured under the combined exposure. Notably, we confirmed that the intracellular stress and activation of the signaling axis of the downstream ASK1-JNK signaling pathway involved in the apoptosis of KGN cells was induced by the mixture of BPA and BPAF. In addition, we verified with pretreatment inhibitors that the BPA and BPAF mixture promoted the co-induction of KGN cell apoptosis via this stress pathway. Our work provides novel insights into the combined cytotoxicity and molecular toxicity mechanism of bisphenol mixtures.  相似文献   

15.
用MTT法测定稀土离子在不同浓度、不同培养液中,与BEL 7402和K562细胞作用不同时间,对细胞的毒性和增殖毒性。结果表明,在含10%小牛血清培养液中,仅个别稀土离子在较高浓度时对BEL 7402细胞增殖有较弱的抑制作用;对于K562细胞,稀土离子在低浓度时对细胞增殖即表现出较强的抑制作用(P<0.05)。当培养液不含小牛血清时,较低浓度的稀土离子即可抑制BEL 7402细胞的增殖(P<0 05)。  相似文献   

16.
Four new oxazoline based macrocycles have been constructed, said cycles were found to possess varying cytotoxicity against six different cancer cell lines: IC50 values of 6.4 μM towards HeLa and 11.9 μM towards LnCaP being the most potent. Two of the four macrocycles were found to have marginal cytotoxicity against MM.1S and MM.1R, myeloma cancer cell lines, and further evaluation showed that they also possessed rapid cellular uptake and accumulation characteristics. Through the structure-activity relationship comparisons between the four compounds, it was found that the C6 position of the E-ring is amendable to substitution and could possibly serve as a conjugation site for the development of a selective delivery system to MM.1R.  相似文献   

17.
Subcellular targeted cancer therapy and in situ monitoring of therapeutic effect are highly desirable for clinical applications. Herein, we report a series of probes by conjugating zero (TPECM-2Br), one (TPECM-1TPP) and two (TPECM-2TPP) triphenylphosphine (TPP) ligands to a fluorogen with aggregation-induced emission (AIE) characteristics. The probes are almost non-emissive as molecularly dissolved species, but they can light up in cell cytoplasm or mitochondria. TPECM-2TPP is found to be able to target mitochondria, depolarize mitochondria membrane potential and selectively exert potent chemo-cytotoxicity on cancer cells. Furthermore, it can efficiently generate singlet oxygen with strong photo-toxicity upon light illumination, which further enhances its anti-cancer effect. On the other hand, TPECM-1TPP can also target mitochondria and generate singlet oxygen to trigger cancer cell apoptosis, but it shows low cytotoxicity in dark. Meanwhile, TPECM-1TPP can report the cellular oxidative stress by visualizing the morphological changes of mitochondria. However, TPECM-2Br does not target mitochondria and shows no obvious anticancer effect either in dark or under light illumination. This study thus highlights the importance of molecular probe design, which yields a new generation of subcellular targeted molecular theranostic agents with multi-function, such as cancer cell imaging, chemotherapy, photodynamic therapy, and in situ monitoring of the therapeutic effect in one go.  相似文献   

18.
Mitochondria‐targeting theranostic probes that enable the simultaneously reporting of and triggering of mitochondrial dysfunctions in cancer cells are highly attractive for cancer diagnosis and therapy. Three fluorescent mitochondria‐targeting theranostic probes have been developed by linking a mitochondrial dye, coumarin‐3‐carboximide, with a widely used traditional Chinese medicine, artemisinin, to kill cancer cells. Fluorescence images showed that the designed coumarin–artemisinin conjugates localized mainly in mitochondria, leading to enhanced anticancer activities over artemisinin. High cytotoxicity against cancer cells correlated with the strong ability to accumulate in mitochondria, which could efficiently increase the intracellular reactive oxygen species level and induce cell apoptosis. This study highlights the potential of using mitochondria‐targeting fluorophores to selectively trigger and directly visualize subcellular drug delivery in living cells.  相似文献   

19.
To broaden the knowledge of cytotoxicity of natural rubber latex (NRL) nanoparticles we for the first time examined the latex biocompatibility in vitro against a panel of cancer cells (A549, A2780, and MDA-MB-231). Owing to fractionation of NRL nanoparticles by ultra-centrifuge, the effect of the non-rubber constituents (intermediate of 5.8 wt% and sediment of 0.2 wt%) on the cytotoxicity was clarified. For intermediate constituent, the half maximal inhibitory concentration (IC50) values at 24 h was 1.05 mg/mL for A549 cells, which was one order of magnitude higher in toxicity as compared to that for A2780 (0.24 mg/mL) and MDA-MB-231 (0.36 mg/mL) cells. In addition, profound studies including cell cycle arrest abilities and apoptosis induction profiles against cancer cells were discussed in detail. It was found that the constituents exhibit some significant effect on the cell cycle arrest and trigger apoptosis for A2780 cells. This effective apoptosis induction profiles was more prominent in MDA-MB-231 cells incubated with NRL nanoparticles and sediment loading conditions. The percentage of apoptotic cells was ca. 6–8% of the total cells.  相似文献   

20.
Carbon nanotubes (CNTs) have been developed for medical and biotechnological applications in the past decades. Their widespread applications make it important to understand their potential hazards to human and the environment. In this study, the possible toxicological effects of the oxidized multi-walled carbon nanotubes (O-MWCNTs) were assessed on RAW 264.7 macrophages in vitro. Several toxicological endpoints, such as cell viability, the release of LDH and IL-8, GSH/GSSG ratio, intracellular calcium concentration and ultrastructural changes in cell morphology, were carried out. The results showed that O-MWCNTs had very limited effects on oxidative stress, cellular toxicity and apoptosis. Transmission electron microscope clearly demonstrates RAW 264.7 macrophages engulfed plenty of O-MWCNTs, and some of them resided in the cytoplasm, while the morphology was not altered by O-MWCNTs. As the control, the pristine MWCNTs (p-MWCNTs) show higher cytotoxicity than O-MWCNTs, damaging cell viability and inducing cell apoptosis. All these toxicological data are of benefit to more wide applications of O-MWCNTs in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号