首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-pressure-processing (HPP) at 400 or 600 MPa was applied to cheeses made from ewe raw milk, on days 21 or 35 after manufacturing, to reduce proteolysis and prevent over-ripening. The characteristics of HPP and non-pressurized (control) cheeses were compared during ripening at 8 °C until day 60 and further storage at 4 °C until day 240. HPP and control cheeses showed similar pH values throughout ripening, but on day 240 pH values remained 0.4–0.6 units lower for HPP cheeses than for the control cheeses. Casein degradation was significantly retarded in the 600 MPa cheeses. Their α-casein concentration was 48–52 % higher on day 60 and 30–33 % higher on day 240 than in the control cheeses while β-casein concentration was 25–26 % higher on day 60 and 100–103 % higher on day 240. No significant differences in para-κ-casein concentration between cheeses were found on day 60, but on day 240, it was 22–35 % higher in the 600 MPa cheeses than in the control cheese. Hydrophilic peptides, hydrophobic peptides and total free amino acids evolved similarly in HPP and control cheeses during the 60-day ripening period. However, on day 240 hydrophilic peptides were at 34–39 % lower levels in the 600 MPa cheeses than in the control cheeses, hydrophobic peptides at 7–16 % lower levels and total free amino acids at 25–29 % lower levels. Flavour intensity scores increased at a slower rate in HPP cheeses than in the control cheese. Flavour quality declined markedly in the control cheeses during refrigerated storage while it did not vary significantly in 600 MPa cheeses.  相似文献   

2.
Changes in nitrogen compounds during ripening of 40 batches of Manchego cheese made from raw milk (24 batches) or pasteurized milk (16 batches) at five different dairies throughout the year were investigated. After ripening for six months, degradation of p-kappa- and beta-caseins was more intense in raw milk cheese and degradation of alpha(s2)-casein in pasteurized milk cheese. Milk pasteurization had no significant effect on breakdown of alpha(s1)-casein. Hydrophobic peptide content did not differ between raw and pasteurized milk cheese, whereas hydrophilic peptide content was higher in raw milk cheese. There were no significant differences between seasons for residual caseins, but hydrophobic peptides were at a higher level in cheese made in autumn and winter and hydrophilic peptides in cheese made in winter and spring. Raw milk cheese had a higher content of total free amino acids and of most individual free amino acids than pasteurized milk cheese. The relative percentages of the individual free amino acids were significantly different for raw milk and pasteurized milk cheeses. The relative percentages of Lys and lie increased, while those of Val, Leu and Phe decreased during ripening. There were also seasonal variations within the relative percentages of free amino acids. In raw milk cheeses, Asp and Cys were relatively more abundant in those made in autumn, Glu and Arg in cheeses made in winter, and Lys and Ile in cheeses made in spring and summer. Biogenic amines were detected only in raw milk cheese, with the highest levels of histamine, tryptamine and tyramine in cheeses made in spring, winter and spring, respectively.  相似文献   

3.
Ewe milk cheeses were submitted to 200, 300, 400, and 500 MPa (2P to 5P) at 2 stages of ripening (after 1 and 15 d of manufacturing; P1 and P15). The high-pressure-treated cheeses showed a more important hydrolysis of β-casein than control and 2P1 cheeses. Degradation of αs1-casein was more important in 3P1, 4P1, and P15 cheeses than control and 2P1 cheeses. The 5P1 cheeses exhibited the lowest degradation of αs-caseins, probably as a consequence of the inactivation of residual chymosin. Treatment at 300 MPa applied on the first day of ripening increased the peptidolytic activity, accelerating the secondary proteolysis of cheeses. The 3P1 cheeses had extensive peptide degradation and the highest content of free amino acids. Treatments at 500 MPa, however, decelerated the proteolysis of cheeses due to a reduction of microbial population and inactivation of enzymes.  相似文献   

4.
Turkish White-brined cheese was manufactured using Lactococcus strains (Lactococcus lactis ssp. lactis NCDO763 plus L. lactis ssp. cremoris SK11 and L. lactis ssp. lactis UC317 plus L. lactis ssp. cremoris HP) or without a starter culture, and ripened for 90 d. It was found that the use of starters significantly influenced the physical, chemical, biochemical, and sensory properties of the cheeses. Chemical composition, pH, and sensory properties of cheeses made with starter were not affected by the different starter bacteria. The levels of soluble nitrogen fractions and urea-PAGE of the pH 4.6-insoluble fractions were found to be significantly different at various stages of ripening. Urea-PAGE patterns of the pH 4.6-insoluble fractions of the cheeses showed that considerable degradation of αs1-casein occurred and that β-casein was more resistant to hydrolysis. The use of a starter culture significantly influenced the levels of 12% trichloroacetic acid-soluble nitrogen, 5% phosphotungstic acid-soluble nitrogen, free amino acids, total free fatty acids, and the peptide profiles (reverse phase-HPLC) of 70% (vol/vol) ethanol-soluble and insoluble fractions of the pH 4.6-soluble fraction of the cheeses. The levels of peptides in the cheeses increased during the ripening period. Principal component and hierarchical cluster analyses of electrophoretic and chromatographic results indicated that the cheeses were significantly different in terms of their peptide profiles and they were grouped based on the use and type of starter and stage of ripening. Levels of free amino acid in the cheeses differed; Leu, Glu, Phe, Lys, and Val were the most abundant amino acids. Nitrogen fractions, total free amino acids, total free fatty acids, and the levels of peptides resolved by reverse phase-HPLC increased during ripening. No significant differences were found between the sensory properties of cheeses made using a starter, but the cheese made without starter received lower scores than the cheeses made using a starter. It was found that the cheese made with strains NCDO763 plus SK11 had the best quality during ripening. It was concluded that the use of different starter bacteria caused significant differences in the quality of the cheese, and that each starter culture contributed to proteolysis to a different degree.  相似文献   

5.
Cheddar cheese was produced with different lactobacilli strains added to accelerate ripening. The concentration of proteolytic products was determined as free amino acids in the water-soluble fraction at two, four, seven and nine months of aging and at two different maturation temperatures (6°C, 15°C). All amino acids increased during ripening and were higher in the Lactobacillus- added cheeses than in the control cheese, and higher in cheeses ripened at 15°C than at 6°C. Glutamic acid, leucine, phenylalanine, valine and lysine were generally in higher proportion in all cheeses. The cheeses with added L. casei-casei L2A were classified as having a “strong Cheddar cheese” flavor after only seven months of ripening at 6°C.  相似文献   

6.
Primary and secondary proteolysis of goat cheese made from raw (RA), pasteurized (PA; 72 °C, 15 s) and pressure-treated milk (PR; 500 MPa, 15 min, 20 °C) were examined by capillary electrophoresis, nitrogen fractionation and HPLC peptide profiles. PA milk cheese showed a more important hydrolysis (P<0.05) of αs1-casein than RA milk cheese at the first stages of ripening (15 days), while PR milk cheese had a level between those seen in PA and RA milk cheeses. Degradation of β-casein was more important (P<0.05) in PA and PR than in RA milk cheeses at 15 days of ripening. However, from thereon β-casein in PR and RA milk cheeses was hydrolyzed at essentially similar rates, but at lower rates (P<0.05) than in PA milk cheeses. Pressure treatment could induce proteolysis of β-casein in a way, which is different from that produced by heat treatment. There was an increase in 4.6-soluble nitrogen (WSN) and in trichloroacetic acid (TCASN) throughout ripening in cheeses, but higher contents (P<0.05) in PA and PR milk cheeses at the end of ripening were observed. PR milk cheeses contained considerably higher content (P<0.05) of free amino acids than RA or PA milk cheeses. In general, heat and pressure treatments had no significant effect on the levels of hydrophobic and hydrophilic peptides.  相似文献   

7.
In a previous study, ultrafiltration (UF) at 1.2x reduced residual chymosin activity and bitterness in exopolysaccharide (EPS)-positive reduced fat Cheddar cheese. The objective of this research was to study the effect of this level of concentration on the textural and functional characteristics of the reduced fat cheese. Ultrafiltration (1.2x) did not affect the hardness, cohesiveness, adhesiveness, chewiness, and gumminess of EPS-positive cheese. The 6-month old UF cheeses were springier than non-UF cheeses. However, the springiness of the EPS-positive cheese made from UF milk was much lower than that of the EPS-negative cheeses. Texture of the EPS-negative cheese was more affected by UF than that of the EPS-positive cheese. Differences were seen in the extent of flow between UF and non-UF cheeses at 1 and 3-months but not after 6 months ripening. Ultrafiltration increased the elastic modulus in the 6-month old EPS-positive cheeses. Higher body and texture scores were given to EPS-positive cheeses than the EPS-negative ones. Sensory panelists found the body of the UF and non-UF cheeses to be similar.  相似文献   

8.
Pepstatin A, an inhibitor of acid proteases, was added (7.5, 15 or 30 μmol L-1) to the curds/whey mixture at the start of cooking to inhibit residual coagulant in miniature (20 g) Cheddar-type cheeses. No degradation of s1-casein was observed by urea–polyacryl amide gel electrophoresis (PAGE) in the pepstatin-treated cheeses, indicating that all the concentrations of pepstatin used in this study effectively inhibited residual coagulant throughout ripening. The level of water-soluble N (WSN) as % of total N increased very slowly in the pepstatin-treated cheeses, while there was a steady increase in WSN in the control cheeses; after 4 months of ripening, the level of WSN in the control cheese was nearly three times as high as in the cheese treated with 30 μmol L-1 pepstatin. Urea–PAGE of water-soluble fractions (WSF) showed marked differences between pepstatin-treated cheeses and their respective controls throughout ripening. Reverse-phase HPLC of the WSF of the cheeses showed that the peptides s1-CN f1-9/13, which are formed from the chymosin-produced peptide, s1-CN f1-23, by the action of the cell envelope-associated proteinase of Lactococcus, were not present in pepstatin-treated cheeses. Levels of total free amino acids (as determined by the Cd–ninhydrin method) were higher in controls than in pepstatin-treated cheeses throughout ripening. The results of this study demonstrated that pepstatin is a very effective inhibitor of residual coagulant in cheese.  相似文献   

9.
《International Dairy Journal》2005,15(6-9):941-955
Pizza cheese was manufactured from two types of Ultrafiltration (UF)-fortified milks: high solids (UFHS; 15.2% TS) and medium solids (UFMS; 13.5%). Cheese milks were obtained by blending cold processed UF retentate with partially skimmed milk and UF (skim milk) retentate. Cheese functionality was assessed using oscillatory rheology and by baking on a pizza. Gels made from UF-fortified milks had similar clotting times and they clotted faster than control milk. Shear stress values of gels from UF-fortified milks were higher than control. Fat recoveries in the cheeses increased in the order UFHS<control<UFMS. Nitrogen recoveries were lower in control than UF-fortified cheeses. During heating loss tangent curves shifted higher during the first month of ripening and the temperature for the maximum loss tangent decreased. Crossover temperature also decreased during ripening. Trichloroacetic acid-soluble nitrogen levels were similar in all cheeses. Standardization of cheese milk with cold UF retentates increased yield without adversely affecting functionality.  相似文献   

10.
In this study, ultrafiltered (UF) Iranian white cheese made with adjunct cultures including six Lactobacillus isolates (Lactobacillus brevis, L. casei and L. plantarum) from traditional Iranian Motal cheese. The peptide extract (<5 kDa) of cheese samples were assessed for angiotensin-converting enzyme (ACE)-inhibitory activity during ripening (5 °C). Among the strains used, L. brevis KX572382 (M8) was selected because of the greater increase in (ACE)-inhibitory activity in the cheese (P < 0.05). The highest activity of M8 extract was observed on the 28th (71.72%) day of ripening (P < 0.05). Proteolytic activity assessment and RP-HPLC peptide profile of M8 water-soluble extracts (WSEs) indicated the effect of M8 on further protein degradation due to secondary proteolysis. A total of 7 different peptide sequences, previously known in the literature for their ACE-inhibitory activity, were tentatively identified by LC/ESI-MS in 28-day M8 peptide extract. Although the effect of M8 on pH and the proteolysis development in cheese was significant, no adverse effect was observed on the sensory properties. In conclusion, M8 strain can enhance the functional properties of Iranian UF white cheese.  相似文献   

11.
The extent of cheese ripening and the type of proteolysis and lipolysis of common cheeses in Egypt were measured by concentration of each of soluble tyrosine; soluble trypophan; amino N; soluble N/total N; total volatile fatty acids and free fatty acids, and by quantitative gel electrophoresis and thin-layer chromatography. The effects of concentration-related factors (e.g. moisture, salt and pH) on cheese protein and fat hydrolysis were also studied.

The results showed that, as a heterogeneous group of cheese, differences were marked in gross chemical composition and both the extent of cheese ripening and the relative proportions of protein, fat and their degradation products. Among the selected cheeses, ras cheese has higher values of ripening indices, while kariesh cheese has lower values. Increasing the salt content of mish cheese caused an inhibition in degradation of its protein and fat.

The principal protein regions in electrophoretic patterns and fractions of fat in TLC patterns were similar in number and relative mobility. In most of the cheeses, s-casein was degraded more extensively than β-casein, while the whole of the γ-caseins were resistant to further hydrolysis. Also, there was close correlation between s-casein and its degradation products. In spite of the absence of significant relationships between the soluble nitrogen and the relative amounts of unattached s-, β-, and γ-caseins, the amino nitrogen and soluble tyrosine and tryptophan were in close correlation with s- and β-caseins and their degradation products.

A positive relationship was noted between pH (from 4·40 to 5·85) and both protein and fat hydrolysis. The fat of roquefort cheese was more hydrolysed than other cheeses; however, the fat of the soft cheeses was less hydrolysed. Moreover, negative and highly significant correlations between triglycerides and their degradation by both TLC and chemical analysis were obtained.  相似文献   


12.
The proteolytic and lipolytic changes during the ripening process were investigated in four batches of Armada goat's milk cheese (an artisanal variety produced in the North of Spain), by determining the classical nitrogen fractions, caseins and their degradation products, free amino acids, as well as the acidity of the fat, thiobarbituric acid (TBA) number and free fatty acids. Values obtained for the nitrogen fractions and for caseins and their degradation products show that this cheese undergoes very little protein degradation. A low free amino acids content was observed throughout the ripening process with a predominance of Pro followed by Leu+Ile, Glu acid, Phe, His+Lys and Val. The lipid degrada-tion was very intense from the second month of ripening, only comparable to that reported for cheeses ripened by moulds. The average free fatty acids content increased 20-fold during ripening, reaching final values of 44·5 g kg−1. All the free fatty acids increased considerably during ripening, resulting in a predominance of saturated and unsaturated long-chain acids, followed by medium-chain acids, C10 principally. Short-chain fatty acid content by the end of ripening was higher than that presented in other cheese varieties with a similar high degree of lipolysis. © 1997 SCI.  相似文献   

13.
《Food chemistry》2002,79(4):445-452
Manufacturing procedures and compositional characteristics were studied for fresh soft white cheese (Domiati-type) made from goats' milk, using ultrafiltration (UF) and conventional processes. Yields, recovery of protein, fat, total solids and sensory characteristics of this type of cheese were also evaluated. The cheeses made by UF process was higher in pH, moisture content and ash, whereas protein and fat contents were lower compared to those cheeses made by the conventional process. An increase of 21% in cheese yields, 21–26% in protein recovery, 15–19% in fat recovery and 17–22% in total solids recovery was achieved by the UF process. Moreover, the UF process showed 83–85, 83.3, 75, 82.5 and 75% reduction in the total process time, salt, starter culture, rennet and calcium chloride used, respectively. The mean score for texture of cheeses made by UF was significantly higher than that of cheeses made by the traditional process. However, a difference in flavour and overall acceptability between UF cheeses and traditional process cheeses was not verified. The most acceptable cheeses were these made with yogurt or lactic ferment starter culture.  相似文献   

14.
The objective of this study was to describe the proteolysis and lipolysis profiles in goat cheese made in the Canary Islands (Spain) using raw milk with 3 different fat contents (0.5, 1.5, and 5%) and ripened for 1, 7, 14, and 28 d. β-Casein was the most abundant protein in all cheeses and at all ripening times. Quantitative analysis showed a general decrease in caseins as ripening progressed, and degradation rates were higher for αS1-casein than for β-casein and αS2-casein. Furthermore, the degradation rate during the experimental time decreased with lower fat contents. The αS2-casein and αS1-casein levels that remained in full-fat and reduced-fat cheeses were less than those in low-fat cheese. In contrast, β-casein also showed degradation along with ripening, but differences in degradation among the 3 cheese types were not significant at 28 d. The degradation products increased with the ripening time in all cheeses, but they were higher in full-fat cheese than in reduced-fat and low-fat cheeses. The free fatty acid concentration per 100 g of cheese was higher in full-fat cheese than in reduced- and low-fat cheese; however, when the results were expressed as milligrams of free fatty acids per gram of fat in cheese, then lipolysis occurred more rapidly in low-fat cheese than in reduced- and full-fat cheeses. These results may explain the atypical texture and off-flavors found in low-fat goat cheeses, likely the main causes of non-acceptance.  相似文献   

15.
Skimmilk retentates from ultrafiltration (UF) were used in combination with concentrated cream (67% milk fat) to prepare a liquid precheese mixture that with the addition of rennet, lactic starter culture and a mold spore preparation of Penicillium candidum was transformed readily into Camembert cheese upon ripening. Yield increases from the retention of soluble milk protein, closer weight control tolerances for individual cheeses and reduction in rennet in comparison to the conventional Camembert process were observed. The behavior of enteropathogenic E. coli (ECC) serotypes was demonstrated in the Camembert cheese made from UF processes. Relationships were determined in UF Camembert as to microbial type and numbers used to inoculate the precheese, and as to site of survival and growth of different EEC serotypes. Differences which were observed in the physicochemical properties between conventional and UF cheesemilk mixtures predisposed the UF Camembert cheeses to greater E. coli survival and growth than in the Camembert cheeses made conventionally.  相似文献   

16.
Penicillium roqueforti plays an important role in the ripening of blue-veined cheeses, mostly due to lactic acid consumption and to its extracellular enzymes. The strong activity of P. roqueforti proteinases may bring about cheese over-ripening. Also, free amino acids at high concentrations serve as substrates for biogenic amine formation. Both facts result in shorter product shelf-life. To prevent over-ripening and buildup of biogenic amines, blue-veined cheeses made from pasteurized ovine milk were high-pressure treated at 400 or 600 MPa after 3, 6, or 9 wk of ripening. Primary and secondary proteolysis, biogenic amines, and sensory characteristics of pressurized and control cheeses were monitored for a 90-d ripening period, followed by a 270-d refrigerated storage period. On d 90, treatments at 400 MPa had lowered counts of lactic acid bacteria and P. roqueforti by less than 2 log units, whereas treatments at 600 MPa had reduced lactic acid bacteria counts by more than 4 log units and P. roqueforti counts by more than 6 log units. No residual α-casein (CN) or κ-CN were detected in control cheese on d 90. Concentrations of β-CN, para-κ-CN, and γ-CN were generally higher in 600 MPa cheeses than in the rest. From d 90 onwards, hydrophilic peptides were at similar levels in pressurized and control cheeses, but hydrophobic peptides and the hydrophobic-to-hydrophilic peptide ratio were at higher levels in pressurized cheeses than in control cheese. Aminopeptidase activity, overall proteolysis, and free amino acid contents were generally higher in control cheese than in pressurized cheeses, particularly if treated at 600 MPa. Tyramine concentration was lower in pressurized cheeses, but tryptamine, phenylethylamine, and putrescine contents were higher in some of the pressurized cheeses than in control cheese. Differences in sensory characteristics between pressurized and control cheeses were generally negligible, with the only exception of treatment at high pressure level (600 MPa) at an early ripening stage (3 wk), which affected biochemical changes and sensory characteristics.  相似文献   

17.
Proteolysis of Mahon cheese as affected by acoustic-assisted brining   总被引:1,自引:0,他引:1  
 Mahon cheeses were brined in the presence of an ultrasonic field and ripened during 75 days at 12  °C and 85% RH. Secondary proteolysis (water-soluble N, non-protein N, and free amino acids) was measured and compared to that obtained for cheeses conventionally brined. There were no differences in water-soluble and non-protein N attributable to the brining treatment. However, cheeses acoustically brined exhibited higher concentrations of free amino acids. The release of total free amino acids was more pronounced during the first 15 days of ripening for both types of brining treatments. The changes in proteolysis (free amino acids) during cheese ripening caused by acoustic-assisted brining are indicative of a higher extent of proteolysis and may also improve cheese flavor. Received: 13 March 2000  相似文献   

18.
Proteolytic and lipolytic changes were studied throughout ripening of five batches of León cow's milk cheese, a traditional variety made in the north of Spain. Total soluble nitrogen, non-protein nitrogen, oligopeptides nitrogen, amino nitrogen and ammonia nitrogen fractions increased slightly during the ripening process. The final values of these nitrogen fractions indicate that this cheese undergoes a very slight proteolysis as much in extent as in depth. This weak protein degradation is corroborated when the caseins and their degradation products were quantified by electrophoresis. β-Casein stayed practically intact throughout the ripening process and only 10% of αs-casein became degraded. The content of total free amino acids increased progressively but in a slightly increased way during ripening, reaching final average values of 592 mg (100 g)−1 of total solids. The most abundant free amino acid at the end of ripening was lysine, followed by leucine, glutamic acid, tryptophan, valine and phenylalanine. The acidity index of the fat values increased during ripening by a factor of 4.39. The final values of this parameter are in the range of those observed in other cow's milk cheeses ripened by bacteria. The content in total free fatty acids underwent an increase throughout ripening reaching final average values of 6669 ppm. The most abundant free fatty acid at the end of ripening was oleic acid followed by butyric and palmitic acids. The high content of short-chain fatty acids is outstanding, specially that of butyric acid.  相似文献   

19.
The texture and microstructure of white-brined cheeses similar to urfa (a traditional Turkish cheese) were studied. One batch of cheeses was made in the traditional manner and one batch was made from ultrafiltered (UF) milk. Samples from each batch were either ripened in brine after production or scalded in whey for 3 min at 90°C prior to ripening. The results showed only marginal differences in the ripening profiles of both batches of unscalded cheeses, but scalding slowed down the extent of proteolysis in both batches. The scalded cheeses had a firmer texture than the unscalded ones, and the unscalded UF cheese had a more 'springy' body than the unscalded traditional cheese. Overall, scalding resulted in a more homogeneous structure, but the unscalded UF cheese had a close texture that resembled the scalded samples. It was concluded that, with respect to texture and structure, cheeses made with UF milk do not need to be scalded after production.  相似文献   

20.
Beyaz peynir, a white brined cheese, was manufactured using different blends of camel chymosin (100, 75, 50, 25, and 0%) with calf chymosin and ripened for 90 d. The purpose of this study was to determine the best mixture of coagulant for Beyaz peynir, in terms of proteolysis, texture, and melting characteristics. The cheeses were evaluated in terms of chemical composition, levels of proteolysis, total free amino acids, texture, meltability, residual coagulant activity, microstructure, and sensory properties during 90 d of ripening. Differences in the gross chemical composition were statistically significant for all types of cheeses. Levels of proteolysis were highly dependent on the blends of the coagulants. Higher proteolysis was observed in cheeses that used a higher ratio of calf chymosin. Differences in urea-PAGE and peptide profiles of each cheese were observed as well. Meltability values proportionally increased with the higher increasing levels of calf chymosin in the blend formula. These coagulants had a slight effect on the microstructure of cheeses. The cheese made with camel chymosin had a harder texture than calf chymosin cheese, and hardness values of all cheese samples decreased during ripening. The cheeses with a high ratio of calf chymosin had higher residual enzyme activity than those made with camel chymosin. No significant difference in sensory properties was observed among the cheeses. In conclusion, cheeses made with a high level of calf chymosin had a higher level of proteolysis, residual coagulant activity, and meltability. The cheeses also had a softer texture than cheeses made with a high content of camel chymosin. Camel chymosin may be used as a coagulant alone if low or limited levels of proteolysis are desired in cheese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号