首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A new capacitive structure for tilt sensor based on the MEMS technology is designed, analyzed and simulated. With a detailed analysis, we achieve to a precise relation between capacitance and inclination angle. Taking advantage of cylindrical structure in our design, we reach to a linear relationship between capacitance and tilt angle. In three designs of our capacitive tilt micro-sensor, there are 1, 2 and 4 micro capacitors. These capacitors have a common plate of mercury which is movable. Another plate is fixed. Displacement of mercury according to the deflection tends to the variations of capacitors and subsequently total capacitance of the tilt micro-sensor changes. In each of three designs for this micro-sensor, output capacitance (Cout) is introduced with a special equation for obtaining a linear and continues relationship between Cout and tilt angle. The last proposed micro-sensor structure with 4 micro capacitors, shows linear relationship for Cout over tilt measurement range of ?180° to +180° on one axis besides proper sensitivity.  相似文献   

2.
In this paper a novel MEMS tunable CPW antenna with wide tuning range of frequency is presented. The antenna’s frequency tuning range increment is achieved by loading three novel large tuning range capacitors at radiation edge of antenna patch. Two techniques are employed for increasing the capacitors tuning range. First, dual gap technique is used to overcome the pull-in limitation and then two lateral beams are added in order to parallel movement of capacitive plate which increases the capacitance value. The simulation result shows that the resonance frequency tuning range of antenna increased from 1.96 GHz loaded by traditional capacitor to 6.89 GHz using the new capacitor structure. Also in resonance frequency, the antenna has a good impedance matching with transmission line even in high capacitance values.  相似文献   

3.
This article describes the design and characterization of a continuously variable loaded‐line phase shifter using micro‐electro‐mechanical system (MEMS) variable capacitors as phase shifting components. The design and characterization of micro‐electro‐mechanical system (MEMS) variable capacitors for operation at 26.5 GHz is described. A lumped‐element model is obtained from measurements and physical consideration. Experimental results show a capacitance‐tuning ratio of 3.7:1. The capacitor's characterization results are used for designing the phase shifter. A phase shift of 40.5° at 26.5 GHz for a loaded‐line type has been measured. There is good agreement between simulated and measured results. A companion article (Part II) describes the application of these variable capacitors to the design of reflection‐type phase shifters. © 2003 Wiley Periodicals, Inc. Int J RF and Microwave CAE 13: 321–337, 2003.  相似文献   

4.
Variable capacitors are a key component in Radio Frequency Micro Electro-Mechanical Systems (RF MEMS). They comprise fixed and flexible electrodes. Deformation, or actuation, of the flexible electrode changes the capacitance of the capacitor. This way, electrical properties of high frequency circuits can be modified. Traditionally, variable capacitors are based on a planar layout architecture, while a newer, vertical-wall, quasi three-dimensional approach theoretically enables increased device performance. Such devices depend on high aspect ratios, i.e. relatively high micro structures with very thin walls and gaps. A few vertical-wall variable capacitors made of nickel or gold have been fabricated to date, using deep X-ray lithography and subsequent electroplating (Achenbach et al. 2006; Klymyshyn et al. 2007, 2010) as the fabrication approach. They feature, amongst others, excellent quality factors of Q ≤ 95 at 5.6 GHz with 50 Ω reactance, but suffer from a very limited tuning range of the capacitance value (tuning ratio of, e.g., 1.38:1). The devices presented here exploit the same architecture and materials selection, resulting in similar, excellent Q-factors, but feature a different electrode layout approach, referred to as leveraged-bending. This layout is based on pulling a flexible electrode sideways, towards a fixed electrode, increasing the capacitance when actuating the variable capacitor. The leveraged bending approach theoretically enables infinitely high tuning ratios for components with perfect structure accuracy. To date, a significantly increased tuning ratio of 1.9:1 has been demonstrated. Limiting factors are an electrically non-ideal layout geometry chosen as a compromise to increase the fabrication yield, and structure deviations of ~1.6 μm from CAD layout to the electroplated component. Electrostatic actuation requires voltages between 0 and 72 V for capacitance values on the order of C = 0.3 pF at device dimensions of about 1.5 mm overall length, 5–10 μm gap and wall widths, and 100 μm metal height. Device performance measured with a vector network analyzer is in 97 % agreement with simulation results based on two-dimensional electrostatic-structural coupling (ANSYS Multiphysics) and three-dimensional electromagnetic field simulations (Ansoft HFSS). These simulations also indicate that an optimized gap geometry will allow to reduce the actuation voltage required by up to 40 %.  相似文献   

5.
针对飞机尾翼转角测量及远距离监控问题,设计了一种基于数字式MEMS加速度传感器测量飞机尾翼转角的测量系统;分析了电容式加速传感器测角原理;利用数字式MEMS加速度传感器ADXL345,结合无线ZigBee技术采用CC2430模块,以嵌入式STM32单片机作为控制器构建了一种测量飞机尾翼转角大小的测量系统;采用三维转台对飞机尾翼转动进行了模拟,完成了±90°范围内转角的测量;实验结果表明,在±90°转角范围内,测量误差的最大值为0.277°,满足小于0.3°的误差要求;该测量系统可以有效地完成飞机尾翼转角测量工作。  相似文献   

6.
A novel torsional RF MEMS capacitive switch design on silicon substrate is presented. The optimized switch topology such as reduction in up-state capacitance results in insertion loss better than ?0.1 dB till 20 GHz. Off to on state capacitance ratio is also improved by 18 fold and isolation is better than ?43 dB at 9.5 GHz. The achieved on state return loss is ?38 dB as compared to ?21 dB at 9.5 GHz. An optimized reduction in contact area and use of floating metal layer increases the switching speed from 56 to 46 μsec. It also increases the switch reliability by alleviating the stiction.  相似文献   

7.
High aspect ratio variable capacitors have been fabricated using deep X-ray lithography and electroplating. Stiction phenomena applicable to high aspect ratio devices are presented, including the conditions for stiction to occur and the critical dimensions of structures. Actuation tests at 3 GHz are also presented and show a maximum capacitance of 0.86 pF with no actuation voltage and a minimum capacitance of 0.70 pF with an actuation voltage of 20 V just before pull-in, which gives a tuning range of 1.23:1. Corresponding Q-factor values are 49.3 and 70.8 respectively. After pull-in, the measured capacitance is 0.61 pF, corresponding to a tuning range of 1.41:1, with a maximum Q-factor of 102.9.  相似文献   

8.
A structure for a piezoelectrically actuated capacitive RF MEMS switch that is continuously variable between the ON state and the OFF state has been proposed. The device is based on variable capacitance using a cantilever fixed at both ends that is actuated using a lead zirconate titanate thin film. Because the device is contactless, the reliability issues common in contact-type RF MEMS switches can be avoided. A comprehensive mathematical model has been developed in order to study the performance of the device, and allow for design optimization. Electrical measurements on test structures have been compared with the performance predicted by the model, and the results used to design a prototype RF MEMS switch. The model and simulations indicate the proposed switch structure can provide an insertion loss better than 0.7 dB and an isolation of more than 10 dB between 6 and 14 GHz with an actuation voltage of 22.4 V. The state of the device is continuously variable between the ON state and the OFF state, with a tunable range of capacitance of more than 15\(\times \).  相似文献   

9.
The RF applications like voltage controlled oscillators, tunable filters, resonators etc., requires tunable capacitors in their designs. This paper presents the design of wide range MEMS tunable capacitors for RF applications. This design consists of an air suspended bottom plate and a fixed top plate. The top fixed plate and the suspended bottom plate form the tunable capacitor. The capacitance range of this tunable capacitor is from 69.172 to 138.344?nF. This range is wider compared with the conventional MEMS tunable capacitors of tuning ranges in pico Farads. The fabrication process is similar to that of the existing standard integrated circuit fabrication processes, which makes this design suitable for integrated RF applications.  相似文献   

10.
The RF applications like voltage controlled oscillators, tunable filters, resonators etc., requires tunable capacitors in their designs. This paper presents the design of wide range MEMS tunable capacitors for RF applications. This design consists of an air suspended bottom plate and a fixed top plate. The top fixed plate and the suspended bottom plate form the tunable capacitor. The capacitance range of this tunable capacitor is from 69.172 to 138.344 nF. This range is wider compared with the conventional MEMS tunable capacitors of tuning ranges in pico Farads. The fabrication process is similar to that of the existing standard integrated circuit fabrication processes, which makes this design suitable for integrated RF applications.  相似文献   

11.
This Paper reports on investigation of High Con Coff ratio Capacitive Shunt RF MEMS Switch and detailed comparison between uniform three meander beam with non-uniform single meander beam RF MEMS switch. RF MEMS Switches are designed for operation in the range 5–40 GHz. Pull in analysis is performed with gold as a beam material. Simulation reveals that use of high K dielectric material can drastically improve the capacitance ratio of switch. For the same geometry, pull in voltage is 2.45 V for HfO2, 2.7 V for Si3N4 and Capacitive Ratio of the switch with Si3N4 is 83.75 and Capacitive Ratio with HfO2 is 223 at 2g0 (air gap) and 0.8 μm thickness of beam. The Radio Frequency performance of RF MEMS switch is obtained by scattering parameters (insertion loss, Return loss and isolation) which are mainly dominated by down to up capacitance ratio and MEMS bridge geometries. RF analysis shows that insertion loss as low as ?0.4 dB at 20 GHz and isolation as high as 80 dB at 20 GHz can be achieved. Investigation of three uniform meander Design and non-uniform single meander design reveals that use of non-uniform design reduces the design complexity and saves substrate area still maintaining almost same device performance. S-parameter analysis is carried out to compare device performance for both structures. DC analysis of the proposed switch is carried out using Coventorware and RF analysis is performed in MATLAB.  相似文献   

12.
A new coupled circuit and electrostatic/mechanical simulator (COSMO) is presented for the design of low phase noise radio frequency (RF) microelectromechanical systems (MEMS) voltage-controlled oscillators (VCOs). The numerical solution of device level equations is used to accurately compute the capacitance of a MEMS capacitor. This coupled with a circuit simulator facilitates the simulation of circuits incorporating MEMS capacitors. In addition, the noise from the MEMS capacitor is combined with a nonlinear circuit-level noise analysis to determine the phase noise of RF MEMS VCO. Simulations of two different MEMS VCO architectures show good agreement with experimentally observed behavior.  相似文献   

13.
We developed meter-scale large-area capacitive fabric pressure sensors for floor sensors to monitor human position. In the fabric pressure sensor, two fabrics with stripe electrodes of conductive polymer-coated fibers woven into them were stacked vertically, and the capacitance changes between the top and bottom stripe electrodes were measured when pressure was applied. By using the die-coating of a conductive polymer and weaving the resultant fibers with meter-scale automatic looming machines, the 1 m × 1 m area with stripe electrodes at a 20 cm pitch was constructed. The pressure sensitivity, which depends on the number of the sensor fibers forming the stripe electrodes, was characterized and optimized to increase output capacitance change. The stripe electrodes with five sensor fibers were found to exhibit a capacitance change of 1.37 pF when pushed with the average foot pressure (i.e., 2.6 N/cm2), which is large enough to detect with conventional capacitance measurement circuits. Finally, pressure sensing with our woven pressure sensor fabric is demonstrated. Our meter-scale pressure sensor fabric technology will be used for bed and floor sensors for monitoring old people in nursing homes and hospitals.  相似文献   

14.
This paper presented a driving circuit which can output a driving waveform of the piezoelectric element impact-type actuator. The piezoelectric element impact-type actuator generates the rotational movement which is necessary to move the legs of the micro electro mechanical systems (MEMS) microrobot. The MEMS microrobot is made from silicon wafers fabricated by micro fabrication technology. The size of the fabricated MEMS microrobot is 4.0 mm × 4.6 mm × 3.6 mm. The driving circuit consists of a bare chip IC of the pulse-type hardware neuron model (P-HNM) and a peripheral circuit. P-HNM is an electrical oscillating model which has the same basic features of biological neurons. Therefore, P-HNM can output the driving waveform of the piezoelectric element impact-type actuator using electrical oscillation as biological neuron. As a result, we showed that the driving circuit can output the driving waveform of the piezoelectric element impact-type actuator without using any software programs or analog digital converters.  相似文献   

15.
主要分析变面积式微机械加速度敏感元件中的固定平行电极间寄生电容对系统噪声的影响,建立敏感元件的电磁仿真模型,进行噪声公式的推导,并得到了实验验证.通过仿真分析发现,铝电极下的玻璃衬底是增大该寄生电容的主要因素.实验结果表明,该寄生电容会增加60%以上的系统噪声.  相似文献   

16.
This paper presents a silicon microgenerator, fabricated using standard silicon micromachining techniques, which converts external ambient vibrations into electrical energy. Power is generated by an electromagnetic transduction mechanism with static magnets positioned on either side of a moving coil, which is located on a silicon structure designed to resonate laterally in the plane of the chip. The volume of this device is approximately 100 mm3. ANSYS finite element analysis (FEA) has been used to determine the optimum geometry for the microgenerator. Electromagnetic FEA simulations using Ansoft’s Maxwell 3D software have been performed to determine the voltage generated from a single beam generator design. The predicted voltage levels of 0.7–4.15 V can be generated for a two-pole arrangement by tuning the damping factor to achieve maximum displacement for a given input excitation. Experimental results from the microgenerator demonstrate a maximum power output of 104 nW for 0.4g (g=9.81 m s?1) input acceleration at 1.615 kHz. Other frequencies can be achieved by employing different geometries or materials.  相似文献   

17.
We report our study on several de-tethering methods for various high aspect ratio metallic and polymeric MEMS and NEMS parts including 5:1 aspect ratio 50 μm thick metallic (nickel) MEMS parts, 3:1 aspect ratio 1 μm thick sub-micron (350 nm) feature size metallic NEMS actuators, and 10:1 aspect ratio 100 μm thick polymer/metal bi-layer MEMS actuators. Resistive heating was found to be effective for the de-tethering of high aspect ratio metallic MEMS parts. In order to de-tether metallic NEMS parts and polymer/metal bi-layer devices, we performed the milling of tethers using a focused ion beam. Very low current (20 pA) ion beam was found to be effective means of de-tethering the metallic NEMS parts. Relatively larger current (0.3–20 nA) ion beam was found to be good for the polymer/metal bi-layer parts. We demonstrated 3D assembly and complete packaging of the de-tethered high aspect ratio metallic and metal/polymer bilayer MEMS parts.  相似文献   

18.
The performance of micro-machined sensors is primarily determined via the sensitivity of sensing electrode to displacement. This paper presents the design, modelling, optimization and fabrication of an active gap reduction mechanism used on a conventional comb drive to enhance the capacitance in a three axes capacitive micro accelerometer. The design parameters of the active gap reduced comb drive (AGRCD) are optimized for best performance. The finite element analysis of the AGRCD is performed for design verification. The modeling and simulation results demonstrated a 534 % increase in sensitivity of the three axes capacitive micro accelerometer. The three axes capacitive micro accelerometer with AGRCD is fabricated using a commercially available standard metal-multi user MEMS processes.  相似文献   

19.
设计了一种基于体微机械加工技术的新型硅电容式流速流向传感器.这种传感器由圆柱型阻流体和支撑梁构成,这种结构将流体的流速流向信息转化为阻流体的位移,通过四组正交电容来测量位移,从而得到流体的流速和流向.理论计算了传感器的结构尺寸并利用有限元分析方法计算了传感器的电容输出.  相似文献   

20.
Koukharenko  E.  Beeby  S. P.  Tudor  M. J.  White  N. M.  O&#;Donnell  T.  Saha  C.  Kulkarni  S.  Roy  S. 《Microsystem Technologies》2006,12(10):1071-1077

This paper presents a silicon microgenerator, fabricated using standard silicon micromachining techniques, which converts external ambient vibrations into electrical energy. Power is generated by an electromagnetic transduction mechanism with static magnets positioned on either side of a moving coil, which is located on a silicon structure designed to resonate laterally in the plane of the chip. The volume of this device is approximately 100 mm3. ANSYS finite element analysis (FEA) has been used to determine the optimum geometry for the microgenerator. Electromagnetic FEA simulations using Ansoft’s Maxwell 3D software have been performed to determine the voltage generated from a single beam generator design. The predicted voltage levels of 0.7–4.15 V can be generated for a two-pole arrangement by tuning the damping factor to achieve maximum displacement for a given input excitation. Experimental results from the microgenerator demonstrate a maximum power output of 104 nW for 0.4g (g=9.81 m s−1) input acceleration at 1.615 kHz. Other frequencies can be achieved by employing different geometries or materials.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号