共查询到20条相似文献,搜索用时 15 毫秒
1.
Virginia M. Pickel Tong H. Joh June Chan Alain Beaudet 《The Journal of comparative neurology》1984,225(2):291-301
The ultrastructural morphology of serotoninergic terminals and their synaptic relation with catecholaminergic neurons were examined in the medial nuclei of the solitary tracts (m-NTS) using combined autoradiographic and immunocytochemical methods. Adult rats were pretreated with a monoamine oxidase inhibitor and subjected to a 2-hour intraventricular infusion of 50 nM tritiated 5-hydroxytryptamine (3H-5HT). At the termination of the infusion, the brains were fixed by aortic arch perfusion with a mixture of 4% paraformaldehyde and 0.5% glutaraldehyde. Coronal Vibratome sections through the NTS and more rostral raphe nuclei were immunocytochemically labeled with specific antiserum to serotonin or tyrosine hydroxylase and then processed for autoradiography. By light microscopy, concentrations of reduced silver grains indicating uptake of 3H-5HT usually paralleled the localization of peroxidase immunoreactivity for serotonin in neuronal perikarya of the rostral raphe nuclei and in varicosities in the brainstem. The 3H-5HT-containing varicosities were found throughout the medial and commissural portions of the NTS, where they were frequently associated with processes showing immunoreactivity for the catecholamine-synthesizing enzyme tyrosine hydroxylase. Ultrastructural examination of the m-NTS revealed that the silver grains for 3H-5HT were accumulated over axon terminals. The 5HT-labeled terminals contained a heterogeneous population of vesicles and formed both symmetric and asymmetric synapses with dendrites. The recipient dendrites were either unlabeled or showed immunoreactivity for tyrosine hydroxylase. These findings support a direct serotoninergic modulation of catecholaminergic neurons within the rat m-NTS. 相似文献
2.
We performed dual electron microscopic immunocytochemistry to determine the precise cellular relations between beta-adrenergic receptors (beta AR) and catecholaminergic terminals within adult rat brains. An antibody, beta AR404, against a peptide corresponding to the C-terminus of the hamster lung beta AR (beta 2 subtype) together with an anti-tyrosine hydroxylase (TH), a catecholaminergic marker, were used. Results show predominant labeling for beta AR404 within small astrocytic processes (beta-A). This is in sharp contrast to earlier results which showed neuronal labeling when using antibodies against the third intracellular loop of the receptor and of neurons-plus-astrocytes labeled using antibodies against the whole beta AR molecule. beta-A within visual cortex and nuclei of the solitary tracts frequently contacted blood vessel basement membrane and TH-immunoreactive terminals. TH-immunoreactive axons forming axo-axonic juxtapositions with non-TH terminals were also noted to be surrounded by beta-A. In the area postrema, a brain region lacking a blood-brain barrier, few beta-A occurred adjacent to TH-immunoreactive terminals or elsewhere. Thus, 1) catecholamines may act beyond morphologically identifiable synapses; 2) beta-A may mediate interactions between catecholamines and other transmitters; 3) there may be substantial heterogeneity in the structure or the conformation of the beta AR protein between neurons and glia or across CNS regions. 相似文献
3.
beta-Adrenergic receptors (beta AR) in the medial nuclei of tractus solitarii (m-NTS) and area postrema (AP) may bind to catecholamines released from neurons, whereas only the AP has fenestrated capillaries allowing access to circulating catecholamines. Since varied autonomic responses are seen following beta AR activation of the dorsal vagal complex, including the m-NTS and AP, we hypothesized that there might be a cellular basis for varied responses to beta AR stimulation that depends on the differential access to circulating catecholamines. Therefore, we comparatively examined the ultrastructural localization of the beta AR in relation to catecholaminergic neurons in these regions. An antibody directed against the C-terminal tail (amino acids 404-418) of hamster beta-adrenergic receptor (beta AR404) was used in this study. The localization of beta AR404 was achieved by the avidin-biotin peroxidase complex (ABC) technique in combination with a pre-embed immunogold labeling method to localize tyrosine hydroxylase (TH), the catecholamine-synthesizing enzyme. Within m-NTS and at subpostremal border, labeling for beta AR404 was evident along the intracellular surface of plasma membranes of small, apparently distal, astrocytic processes. Astrocytic processes with beta AR404-immunoreactivity formed multiple, thin lamellae around TH-labeled and non-TH neuronal cell bodies and dendrites. beta AR404-immunoreactive astrocytes also extended end-feet around blood vessels and surrounded groups of axon terminals that were directly juxtaposed to each other. Some, but not all, of these axons demonstrated TH-immunoreactivity. Fewer beta AR404-immunoreactive astrocytes were detected in AP, regardless of their proximity to catecholaminergic processes or blood vessels. The present astrocytic localization of beta AR404, together with the earlier, neuronal localization of beta AR's third intracellular loop, suggest that the beta AR may be substantially different between neurons and astrocytes. The regional difference in the prevalence of beta AR404-immunoreactive astrocytes suggests that these receptive sites may either: (i) be preferentially activated by catecholamines released from terminals rather than circulating catecholamines; or (ii) be down-regulated in AP due to blood-born substances, such as catecholamines. The extensive localization of beta AR in the border between m-NTS and AP also suggests that catecholaminergic activation of these astrocytes may dictate the degree of diffusion of catecholamines which are of neuronal or vascular origin. The specific localization of beta AR404-immunoreactivity to the more distal portions of astrocytes suggests the possibility that astrocytes have restrictive distributions of beta AR and that the beta-adrenergic activation lead to morphological or chemical changes that are also localized to the distal portions of astrocytes.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
4.
In cultured spinal neurons, NMDA receptors are absent from excitatory synapses under basal conditions, but can be made to appear at excitatory synapses following blockade of excitatory synaptic activity. The activity dependent synaptic localization of NMDA receptors is critically dependent on both the gradual, global accumulation of the NR2A and NR2B subunits and on a rapid, surface redistribution phase that is primed by the accumulation of NR2A and NR2B and inhibited by synaptic activity. Global changes in NR2A and NR2B accumulation and heterogeneous increases in synaptic NMDA receptor localization can also result from inhibitors of proteasomal processing, from manipulations of proteasomal subunit composition and from media conditioned by neurons undergoing synaptic scaling. While proteasomal processing is a mechanism shared with AMPA receptor scaling in cultured spinal neurons, diffusible factors, heterogeneity, and a rapid surface redistribution phase appear to be unique to activity dependent synaptic NMDA receptor localization. 相似文献
5.
Adrenaline and gamma-aminobutyric acid (GABA) have been implicated in autonomic functions involving the intermediate and caudal portions of the medial nuclei of the solitary tracts (m-NTS). We sought to determine whether there was a cellular basis for direct intracellular or synaptic interactions between these transmitters in neurons in the m-NTS of rat brain by using dual-labeling immunocytochemical methods. Light microscopy revealed immunoautoradiographic labeling for the adrenaline-synthesizing enzyme phenylethanolamine N-methyltransferase (PNMT) in perikarya and processes in close proximity to cells demonstrating peroxidase reaction product for GABA. Electron microscopy of the intermediate m-NTS at the level of the area postrema further established the localization of immunoautoradiographic and peroxidase labels for PNMT and GABA in common as well as separate perikarya and dendrites. All axon terminals were labeled separately for PNMT and GABA. The PNMT-labeled terminals formed both symmetric and asymmetric synapses, whereas the GABA-labeled terminals formed exclusively symmetric synapses. Twenty-four percent (n = 42) of the PNMT- and 39% (n = 128) of the GABA-labeled terminals formed synaptic junctions on unlabeled soma and dendrites. Occasionally both types of terminals converged on a common unlabeled dendrite and on GABA-labeled dendrites. Only 3% of the PNMT- and 12% of the GABA-containing terminals formed synapses on PNMT-labeled soma and dendrites, whereas 7% of each type formed synapses with GABA-labeled profiles. The remaining labeled terminals lacked synaptic relations within the sections examined. The autoradiographic results were confirmed and extended by means of immunogold labeling for PNMT in combination with peroxidase-antiperoxidase localization of the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD). GAD-labeled terminals formed symmetric synapses with dendrites that were either unlabeled or contained low levels of PNMT (gold particles) or PNMT and GAD. We conclude that in caudal, more cardiovascular portions of the NTS, adrenaline and GABA may coexist, but they are more commonly detected in separate populations of neurons having receptive sites for both transmitters and innervating certain common target neurons. 相似文献
6.
Pyruvate dehydrogenase complex (PDHC; EC 1.2.4.1, EC 2.3.1.12 and EC 1.6.4.3) includes 3 catalytically active mitochondrial enzymes involved in the formation of cellular energy through the tricarboxylic acid cycle and in the synthesis of ACh. We sought to determine whether immunocytochemically detected PDHC was enriched in neurons of the rat CNS, and, if so, whether the perikarya containing higher levels of PDHC immunoreactivity were differentially distributed with respect to their size or location within nuclear groups containing ACh, catecholamines or other unidentified transmitters. Under the labeling conditions used in this study, the peroxidase-antiperoxidase immunoreaction product for PDHC was detectable principally in neuronal perikarya. The intensity of immunoreactivity within perikarya was variable as judged visually and by cellular, computer-assisted densitometry. In the forebrain, the most intensely labeled perikarya were seen in the medial septal nuclei, the nuclei of the diagonal band, the nuclei basalis, the dorsal and ventral striatum, and the entorhinal cortex. More caudally, intense immunoreactivity was detected in perikarya in the supraoptic hypothalamic nuclei, reticular thalamic nuclei, lateral substantia nigra, most of the tegmental nuclei, lateral nuclei of the trapezoid body, raphe pontis and obscuris, and the caudal part of the lateral reticular nuclei. In addition, many of the motor nuclei of the cranial nerves, including the dorsal motor nuclei of the vagus and the hypoglossal nuclei, and the nucleus ambiguus contained perikarya with intense PDHC labeling. Densitometry revealed no differences in intensity of immunoreactivity in soma of varying sizes. However, the intensity of neuronal labeling for PDHC was significantly greater in several nuclear groups that were shown in adjacent sections to contain cholinergic, but not catecholaminergic, enzymes. In contrast, the primary olfactory cortex, pyramidal cell layer of the regio inferior of hippocampus, and the Purkinje cell layer of the cerebellum were regions having perikarya with intense PDHC immunoreactivity but lacking both the synthetic and the degradative enzymes for ACh. These results provide the first morphological evidence that PDHC, a general metabolic enzyme complex, is enriched in selective perikarya that are heterogeneously distributed in brain and are especially abundant in many of the regions containing cholinergic neurons. The heterogeneity of PDHC immunoreactivity suggests that certain cholinergic as well as noncholinergic nuclei may be selectively vulnerable to mitochondrial diseases involving pyruvate utilization. 相似文献
7.
Jian-Lian Guan Qing-Ping Wang Seiji Shioda Hidehiko Ochiai Yasumitsu Nakai 《Brain research bulletin》1995,38(5):461-466
A preembedding double immunostaining technique using antibodies against methionine-enkephalin and tyrosine hydroxylase was used to study synaptic relations between enkephalinergic and catecholaminergic neurons in the area postrema of the rat at the electron microscopic level. The large nuclei-containing cell bodies of the catecholaminergic neurons displayed well-developed Golgi apparatus. The catecholaminergic somata and dendrites received synapses from ankephalinergic axon terminals, and most of the synapses were symmetrical. Occasionally, the catecholaminergic axon terminals were also found to be presynaptic to the enkephalinergic dendrites. Because the enkephalinergic neurons have been reported to be involved in cardiovascular function and the catecholaminergic neurons involved in the vomiting behavior, the synapses observed in this study may provide morphological evidence of the relationship between the vomiting and cardiovascular functions that are triggered in the area postrema. 相似文献
8.
V.M. Pickel E.J. Van Bockstaele J. Chan D.M. Cestari 《Journal of neuroscience research》1996,44(5):446-458
Gamma-aminobutyric acid (GABA) is a prominent inhibitory transmitter in both the central nucleus of the amygdala (Ce) and the medial nuclei of the solitary tracts (mNTS). These regions are reciprocally connected by anatomical pathways mediating the coordinated visceral responses to emotional stress. To further determine whether GABA is present in the amygdaloid efferents or their targets in the mNTS, we combined peroxidase labeling of Phaseolus vulgaris leucoagglutinin (PHA-L) or biotinylated dextran amine (BDA) anterogradely transported from the Ce with immunogold-silver detection of antibodies against GABA in the rat mNTS. By light microscopy, peroxidase labeling for either PHA-L or BDA was seen in varicose processes, whereas immunogold-silver labeling for GABA was detected in perikarya and processes throughout the rostrocaudal mNTS. The intermediate mNTS at the level of the area postrema, a region receiving mainly cardiorespiratory and gastric visceral afferents, were examined by electron microscopy. In this region, anterograde labeling was observed exclusively in unmyelinated axons and axon terminals. These terminals lacked detectable GABA-immunoreactivity, but formed symmetric synapses that are associated with inhibition. The targets of the anterogradely labeled terminals were medium-sized dendrites both with and without GABA-labeling. These dendrites often also received convergent input from terminals that were intensely GABA-immunoreactive. We conclude that visceral activation accompanying emotional response to stress is likely to involve inhibition of GABAergic neurons in the mNTS by non-GABA-containing amygdaloid efferents. Furthermore, our results indicate that the inhibition of these GABAergic neurons may be further augmented by release of GABA from other converging terminals in the mNTS. © 1996 Wiley-Liss, Inc. 相似文献
9.
10.
11.
GABAergic neurons in the rat hippocampal formation: ultrastructure and synaptic relationships with catecholaminergic terminals 总被引:3,自引:0,他引:3
Numerous studies indicate that gamma-aminobutyric acid (GABA) can either hyperpolarize or depolarize hippocampal pyramidal and granule cells. While the inhibitory action of GABA may occur directly on these cells, the excitatory action may be mediated by interactions of GABAergic neurons with each other or with catecholaminergic afferents. We sought to examine the cellular basis for these interactions and their relative frequency. Thus, the ultrastructural morphology of GABAergic neurons and their relation to terminals exhibiting immunoreactivity for the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH) were examined in the rat hippocampal formation using combined immunoautoradiographic and peroxidase-antiperoxidase labeling methods. By light microscopy, GABAergic perikarya and processes codistributed most noticeably with TH-containing processes in the hilus of the dentate gyrus (DG) and in strata lucidum, radiatum, and lacunosum-moleculare of the CA3 region of the hippocampus. Thus, these regions were examined further by electron microscopy. In the ultrastructural analysis, GABA-like immunoreactivity (GABA-LI) was detected in neuronal perikarya, dendrites, axons, and axon terminals. The GABA-containing perikarya were large, ovoid (20-40 microns in diameter), and contained abundant cytoplasm and an indented nucleus with one nucleolus. Synaptic junctions on the perikarya and dendrites with GABA-LI were both symmetric and asymmetric. Approximately equal numbers of TH-labeled terminals (19% of 133 in DG; 39% of 26 in CA3) and GABA-containing terminals (19% DG, 15% CA3) formed synapses with GABA-labeled perikarya. The remainder of the presynaptic terminals (62% DG, 46% CA3) were unlabeled, i.e., contained unidentified transmitters. Terminals with GABA-LI (0.5-1.6 microns) contained numerous small clear vesicles and from 0 to 2 large dense-core vesicles. The types of associations formed by terminals with GABA-LI were remarkably similar in the DG and hippocampus proper despite differences in intrinsic cell type and function. Terminals with GABA-LI formed associations with unlabeled perikarya and dendrites (24% of 151 in DG, 25% of 75 in CA3) and synapses with GABA-containing perikarya and dendrites (18% DG, 5% CA3). Additionally, GABAergic terminals converged upon the same perikarya or dendrite as a TH-containing terminal (15% DG, 21% CA3) and were in direct apposition to TH-labeled terminals (19% DG, 20% CA3). The remaining GABAergic terminals (24% DG, 28% CA3) were without any apparent synaptic relations. In both the DG and CA3, the junctions formed by GABAergic terminals were symmetric. Terminals showing colocalization of GABA-LI and TH-I were also detected although rarely.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
12.
Immunocytochemistry was used to establish the cellular localization of choline acetyltransferase [ChAT] throughout the rostrocaudal portions of the nuclei of the solitary tracts [NTS] in rat brain. By light microscopy, two distinct populations of ChAT-positive cells were identified. The first consisted of relatively few, medium-sized neurons located in the caudal one-half of the medial NTS just dorsal to the dorsal motor nucleus of the vagus. The second population of ChAT-labeled neurons was located more anteriorly and surrounded the medial and dorsal borders of the tractus solitarius. These cells were more abundant and smaller diameter than those located more caudally. Thick, non-varicose processes with the light microscopic characteristics of dendrites also were selectively labeled for ChAT. A few of these processes were located near or were continuous with the labeled perikarya of the NTS. However, the vast majority of the immunoreactive processes could be traced from ChAT-labeled perikarya in the ventrally adjacent dorsal motor nucleus of the vagus. These dorsally directed dendrites aborized extensively throughout the NTS, but they were densest in the rostral two-thirds of the nucleus. Caudally, the labeled dendrites coursed horizontally, forming a commissure-like structure between the two vagal motor nuclei. Electron microscopy confirmed the perikaryal and dendritic localization of ChAT in the NTS. The perikarya were characterized by dense peroxidase immunoreactivity throughout the cytoplasm, infolded nuclear membranes, and somatic synapses. The labeled dendritic profiles also were intensely immunoreactive and received synaptic input from unlabeled terminals. The unlabeled afferents to somata and dendrites contained large populations of small clear vesicles.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
13.
The effects of cholinergic agents on isolated dentate neurons were studied to characterize cellular mechanisms underlying carbachol-induced 'theta' EEG activity. Carbachol, eserine, and acetylcholine produced a synchronization of slow wave activity (theta) accompanied by depression of perforant path to dentate field potentials. These effects were antagonized by atropine but not d-tubocurarine. The results suggest that muscarinic receptors mediate theta activity resulting from a depolarization of dentate neurons. 相似文献
14.
T T?mb?l 《Brain research》1967,3(4):307-326
15.
T A Milner 《The Journal of comparative neurology》1991,314(1):37-54
Physiological and pharmacological studies have suggested that catecholamines modulate cholinergic neurons in the medial septal and diagonal band nuclei (i.e., the septal complex). Thus, the ultrastructural morphology of neurons containing choline acetyltransferase (ChAT), the biosynthetic enzyme for acetylcholine, and their relation to catecholaminergic terminals exhibiting immunoreactivity for the catecholamine synthesizing enzyme tyrosine hydroxylase (TH) were examined in the rat septal complex. Dual immunoautoradiographic and peroxidase anti-peroxidase labeling methods were used to simultaneously localize antibodies raised in rabbits against TH and from rat-mouse hybridomas against ChAT in single sections. At least two types of perikarya with ChAT-immunoreactivity (ChAT-I) were observed. The first type were large (20-30 microns), elongated or round, and contained a small indented nucleus with an abundant cytoplasm and an occasional lamellar body. The second type was also either ovoid or round but was medium-sized (15-20 microns) and contained a larger indented nucleus and a smaller amount of cytoplasm than the first type. Both types of perikarya as well as dendrites with ChAT-I were surrounded by astrocytic processes apposed to most of their plasmalemmal surfaces. The distribution and types of terminal associations (i.e., asymmetric synapses, symmetric synapses and appositions which lacked a membrane specialization in the plane of section analyzed) with ChAT-labeled perikarya and dendrites were quantitatively evaluated. The majority (68% of 197) of the presynaptic terminals were unlabeled; the remaining terminals were immunoreactive for TH (25%) or ChAT (7%). All three types of terminals contacted primarily the shafts of small dendrites and more rarely ChAT-labeled perikarya and large dendrites. ChAT-labeled terminals: (1) formed associations with unlabeled perikarya and dendrites (31% of 176); (2) formed associations with perikarya and dendrites with ChAT-I (7%); (3) contacted the same unlabeled perikarya and dendrite as a TH-containing terminal (21%); (4) were in apposition to TH-labeled terminals (25%); or (5) were either in apposition to unlabeled or ChAT-labeled terminals or lacked associations with any processes. The majority of associations formed by the terminals with ChAT-I were on the shafts of small dendrites. Moreover, most of the associations formed were either symmetric synapses or appositions not separated by astrocytes in the plane of section analyzed. These findings provide cellular substrates in the septal complex (1) for sparse synaptic input relative to astrocytic investment of cholinergic neurons and (2) for direct synaptic modulation of cholinergic and non-cholinergic neurons by catecholamines and/or acetylcholine. These findings have direct relevance to catecholaminergic-cholinergic interactions and to the neuropathological basis for Alzheimer's disease. 相似文献
16.
The nucleus of the solitary tract (NTS) is a critical structure involved in coordinating autonomic and visceral activities. Previous independent studies have demonstrated efferent projections from the NTS to the nucleus paragigantocellularis (PGi) and the central nucleus of the amygdala (CNA) in rat brain. To further characterize the neural circuitry originating from the NTS with postsynaptic targets in the amygdala and medullary autonomic targets, distinct green or red fluorescent latex microspheres were injected into the PGi and the CNA, respectively, of the same rat. Thirty-micron thick tissue sections through the lower brainstem and forebrain were collected. Every fourth section through the NTS region was processed for immunocytochemical detection of tyrosine hydroxylase (TH), a marker of catecholaminergic neurons. Retrogradely labeled neurons from the PGi or CNA were distributed throughout the rostro-caudal segments of the NTS. However, the majority of neurons containing both retrograde tracers were distributed within the caudal third of the NTS. Cell counts revealed that approximately 27% of neurons projecting to the CNA in the NTS sent collateralized projections to the PGi while approximately 16% of neurons projecting to the PGi sent collateralized projections to the CNA. Interestingly, more than half of the PGi and CNA-projecting neurons in the NTS expressed TH immunoreactivity. These data indicate that catecholaminergic neurons in the NTS are poised to simultaneously coordinate activities in limbic and medullary autonomic brain regions. 相似文献
17.
Laura Calza Luciana Giardino Roberta Grimaldi Milena Rigolf H.W.M. Steinbusch Mario Tiengo 《Brain research》1985,347(1):135-139
The main serotoninergic groups have been described in the midbrain raphe; in the region of the solitary tract, serotonin (5-HT) has been localized in varicose processes and terminals. This study shows the presence of serotoninergic neurons located in the medial nuclei of the solitary tract of intracisternally injected rats, and describe the mapping, the morphological and morphometrical characteristics of these neurons in young and old rats. In old rats the number of these neurons is approximately double the amount detected in young rats. The suggestions on the functional meaning of these findings are discussed. 相似文献
18.
Akita H Takagi N Ishihara N Takagi K Murotomi K Funakoshi H Matsumoto K Nakamura T Takeo S 《Experimental neurology》2008,210(1):83-94
To examine the effects of HGF on synaptic densities under excitotoxic conditions, we investigated changes in the number of puncta detected by double immunostaining with NMDA receptor subunits and presynaptic markers in cultured hippocampal neurons. Exposure of hippocampal neurons to excitotoxic NMDA (100 muM) decreased the synaptic localization of NMDA receptor subunit NR2B, whereas synaptic NR1 and NR2A clusters were not altered. Colocalization of PSD-95, a scaffolding protein of the receptor, with the presynaptic protein synapsin I was also decreased after excitotoxicity. Treatment with HGF attenuated these decreases in number. The decrease in the levels of surface NR2B subunits following the addition of the excitotoxic NMDA was also attenuated by the HGF treatment. The decrease in CREB phosphorylation in response to depolarization-evoked NMDA receptor activation was prevented by the HGF treatment. These results suggest that HGF not only prevented neuronal cell death but also attenuated the decrease in synaptic localization of NMDA receptor subunits and prevented intracellular signaling through the NMDA receptor. 相似文献
19.
Immunocytochemical localization of GABA in neurons projecting to the ventrolateral nucleus of the solitary tract 总被引:1,自引:0,他引:1
To determine the origin of gamma-aminobutyric acidergic (GABAergic) input to the ventrolateral solitary tract nucleus (vlnTS), we used a double-labeling procedure for retrogradely transported horseradish peroxidase (HRP) and the immunocytochemical localization of GABA. Following HRP injections into the vlnTS, double-labeled neurons were found within the B?tzinger Complex. We conclude that these double-labeled cells are the inhibitory B?tzinger neurons and that GABA is a likely transmitter in this respiratory nucleus. 相似文献
20.
In vitro intracellular recordings from gustatory neurons in the rat solitary nucleus 总被引:2,自引:0,他引:2
The passive membrane properties of neurons in the gustatory zone of the nucleus tractus solitarius (NTS) of rats were studied using an in vitro brain slice preparation. Examination of responses evoked by a 0.5 nA, 100 ms depolarizing pulse suggests that at least two different types of neurons exist in the gustatory NTS: one responding with a low and the other with a high frequency of action potentials. These two neuron groups based on membrane properties might relate to various gustatory cell types recently categorized by morphological characteristics. 相似文献