首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《Journal of power sources》2002,109(2):452-457
Retention of the water content of the membrane in the polymer electrolyte membrane fuel cell is critical for obtaining the maximum power density. Humidification of the reactants is a must to keep the membrane in a wet condition. The present paper identifies the parameters to achieve the maximum humidification of the reactants. Optimization of humidification is also discussed with respect to the pressure drop of the reactants while trying to achieve the theoretical relative humidity (RH), especially for the requirements of a multi-kilowatt stack.  相似文献   

2.
Variable temperature flow field concept allows maintaining close to 100% relative humidity along the entire flow field of the anode and the cathode side without external humidification using water generated during fuel cell operation for internal reactant humidification. This work deals with the experimental validation of the variable temperature flow field concept on a five-segment single cell. The experimental setup provides insight into the membrane water transport, temperature distribution on the current collectors and inside the channels, and the current density distribution along the cell. Variable temperature flow field operation with dry reactants is compared to isothermal operation with partially and fully humidified reactants. The polarization curve comparison shows that the variable temperature flow field operating efficiency is similar or better than the commonly used isothermal configuration with fully humidified reactants. The main contribution of the variable temperature flow field concept, when compared to isothermal operation, is the reduction of the mass transport losses at higher currents, since the generated water is evaporated in the stream of reactants, thereby minimizing the problem of liquid water removal from the cell.  相似文献   

3.
A concept of using the product water to internally humidify the air stream in a PEM fuel cell without external humidification is investigated by a simple, pseudo 2-D model along a single channel. This model takes into account the mass and energy balance, water and heat generation rates, heat removal, and water transport through the membrane. The model and thus the concept were confirmed experimentally using a 5-segment fuel cell. The temperature of each segment could be individually controlled, and the temperature and humidity of air could be measured between each segment. A temperature profile has been established, by applying spatially variable heat removal rates along the cathode channel, that results in relative humidity being close to 100% throughout the cell without any external humidification. The concept may be applied to a fuel cell stack resulting in simplification of the suporting system by avoiding external humidification.  相似文献   

4.
The performance and stability of a PEMFC depends on many operating parameters. The measurement of local currents in PEMFC cells is an important tool for diagnoses and development of fuel cells. In this study, a segmented cell was developed, which could serve as an essential instrument to investigate the different operating conditions in the cells and stacks of technical relevance. In addition, the effects of different feed gas humidity and temperatures were investigated to analyze the steady-state performance, uniformity, and the local stability of PEMFC with the use of eight segmented regions. With this research method, the resistance in each segment could be measured by ac impedance as well as make a comparison between Nafion® 117 and 112 membranes in PEMFC. In the experiment, by probing into the high frequency internal resistance and performance of this cell, the effects of flow rates of fuels, oxidants, relative humidity, and directional channel flows were investigated for performance and stability of local segmented regions. The results of the experiments demonstrate that the local current distribution is strongly influenced by the relative humidity of fuel, the stoichiometric of the processed air, and the mode of operation. The cell was operated at a cell temperature of 50 °C with low relative humidity of 33% and 0%, causing the drying of the membrane (and increase of its resistance) at the top-stream path. The membrane conductivity was enhanced due to the water product increase by the reaction in the middle- and down-stream paths, because the down-stream has higher current than the top-stream. The relative humidity of the air increased along the path due to the product water, therefore, the current density increased as well. The local segmented cell could maintain stable performance at low hydrogen stoichiometry of 1.05 for low humidity gases. As the counter-flow and inverse gravity direction of hydrogen fuel was operated, the fuel cell showed the much more stable and uniform local performance.  相似文献   

5.
It is well known that water plays a very important role in the performance of proton exchange membrane (PEM) fuel cells. Non-uniform water content in the membrane leads to non-uniform ionic resistance, and non-uniform liquid water fraction in the porous electrode causes varied mass transfer resistances. The objective of this work is to study the effects of different anode and cathode humidification temperatures on local current densities of a PEM fuel cell with a co-flow serpentine flow field. The method used is the current distribution measurement gasket technique [H. Sun, G.S. Zhang, L.J. Guo, H. Liu, J. Power Sources 158 (2006) 326–332]. The experimental results show that both air and the hydrogen need to be humidified to ensure optimal cell performance, and too high or too low humidification temperature can cause severe non-uniform distribution of local current density. From the experimental results of local current density distributions, the local membrane hydration, the optimal humidification temperature, and if flooding occurs can be obtained. Such detailed local measurement results could be very valuable in fuel cell design and operation optimizations.  相似文献   

6.
The performance of polymer electrolyte membrane fuel cells is highly influenced by the water content in the membrane. To prevent the membrane from drying, several researchers have proposed extra humidification on the input reactants. But in some applications, the extra size and weight of the humidifier should be avoided. In this research a control technique, which maintains the relative humidity on saturated conditions, is implemented by adjusting the air stoichiometry; the effects of drying of membrane and flooding of electrodes are considered, as well. For initial analysis, a mathematical model reveals the relationship among variables that can be difficult to monitor in a real machine. Also prediction can be tested optimizing time and resources. For instance, the effects of temperature and humidity can be analyzed separately. For experimental validation, tests in a fault tolerant fuel cell are conducted.  相似文献   

7.
《Applied Thermal Engineering》2001,21(11):1119-1135
This paper deals with an experimental and theoretical investigation of air humidification/dehumidification processes carried out in a hollow-fibre membrane contactor.The cross-flow contactor consists of a 1.2 m2 total membrane surface of hollow polypropylene capillaries arranged in a staggered array and has a mass transfer area per unit volume of 593 m2/m3.The heat and vapour mass transfer between the liquid phase (water and LiCl saturated solution) and the process air is analysed.During the humidification process, experiments were carried out using three different mass flow rates of water (19, 35, 54 kg/h), while two different mass flow rates of LiCl saturated solution (25, 41 kg/h) were used for air dehumidification. Air flow rates ranging from 30 to 80 m3/h were considered. Variations in the relative humidity of the air and in the temperatures of the air and liquid were measured. Experiments show a high mass transfer efficiency for both humidification and dehumidification.Furthermore, a numerical model to predict heat and mass transfer through the contactor has been developed. Experimental results are in good agreement with theoretical predictions.  相似文献   

8.
The reactant relative humidity (RH) is a key parameter to keep a suitable water content in the large active area fuel cell. Electrochemical impedance spectroscopy (EIS) is one of the effective methods to identify the water state within the membrane. In this work, the EIS behavior of fuel cell stack under different reactant RH and current density is investigated. Both the whole stack and individual cell impedances are experimentally measured. The internal reactions of the stack and individual cells with different current densities and different reactants RH can be distinguished by impedances. Based on the experiment results, the low frequency impedance has a greater variation than high frequency impedance when the reactant RH changes. And the impedance is more sensitive to the reactant RH under low current density. With the current density increases, the internal self-humidification can be realized to obtain a good performance for large area fuel cells.  相似文献   

9.
The effect of relative humidity of the cathode (RHC) on proton exchange membrane (PEM) fuel cells has been studied focusing on automotive operation. Computational fluid dynamics (CFD) simulations were performed on a 300-cm2 serpentine flow-field configuration at various RHC levels. The dependency of current density, membrane water contents, net water flux on the performance and the uniformity was investigated. The uniformity of current density and temperature was evaluated by employing standard deviation. The water balance inside a fuel cell was examined by describing electro-osmotic drag and back diffusion. It was concluded that the RHC has strong effect on the cell performance and uniformity. The dry RHC showed low cell voltage and non-uniform distributions of current density and temperature, whereas high RHC presented increased cell performance and uniform distributions of current density and temperature with well-hydrated membrane electrode assembly (MEA). Also the local current density distribution was strongly dependent on the local membrane water contents distribution that has complex phenomena of water transport. The elimination of external humidifier is desirable for the automotive operation, but it could degrade cell performance and durability due to dehydration of the MEA. Therefore a proper humidification of the reactant is necessary.  相似文献   

10.
In this study, the internal transport phenomena and mechanism inside an air-cooled proton exchange membrane fuel cell (PEMFC) are investigated. It helps to understand the factors that affect the performance of an air-cooled PEMFC and optimize the design of Membrane Electrode Assembly (MEA) and the flow field. This series article contains two parts. In this paper, i.e., Part Ⅰ of this series, a three-dimensional, two-phase flow, non-isothermal, steady-state Computational Fluid Dynamics (CFD) model is established to investigate the liquid water generation mechanism and the species distributions inside an air-cooled PEMFC single cell with a Base Case flow field design. Dry hydrogen and ambient air (the relative humidity and the stoichiometry are 60% and 150 separately) are considered for the simulation and validation. It is found that the liquid water appears mostly inside the cathode electrode underneath the cathode rib. Inside the anode gas diffusion layer (GDL), the mass fraction of H2 underneath the cathode ribs is lower than that underneath the cathode channels, while the mass fraction of H2O shows the opposite. The distributions of O2 mass fraction and H2O mass fraction inside the cathode GDL have the same trend as those of H2 mass fraction and H2O mass fraction inside the anode GDL. The membrane water content is periodically distributed from channel to channel and its value underneath the cathode rib is much larger than that underneath the cathode channel. The current density distribution is affected by the distribution of water content, i.e., the part underneath the cathode rib shows a larger current density than that underneath the cathode channel.  相似文献   

11.
In this investigation, water in a single-cell proton exchange membrane (PEM) fuel cell was managed using saturated hydrogen and dry air. The experiment was conducted at temperatures of 40, 50 and 60 °C and pressures of 1 and 1.5 bar at both the anode and cathode gas inlets. The feed velocities of hydrogen and air were fixed at 3 and 6 L min−1, respectively. After reaching steady-state conditions, the relative humidity along the single serpentine gas channel was measured. From the experimental data, water transport properties were characterized based on a membrane hydration model. The electro-osmotic drag coefficient, water diffusion coefficient, membrane ionic conductivity and water back-diffusion flux were significantly influenced by the water content in the membrane of the PEM fuel cell. The water content depended on the relative humidity profile along the gas channel. In this investigation, a negative value for the water back-diffusion flux was measured; thus, the transport of water from the cathode to the anode did not occur. This phenomenon was due to the large water concentration gradient between the anode and cathode. Therefore, this strategy successfully prevented flooding in the PEM fuel cell.  相似文献   

12.
Computational fluid dynamics analysis was carried out to investigate the reactants flow behavior and water management for proton exchange membrane fuel cell (PEMFC). A complete three-dimensional model was chosen for single straight channel geometry considering both anode and cathode humidification. Phase transformation was included in the model to predict the water vapor and liquid water distributions and the overall performance of the cell for different current densities. The simulated results showed that for fully humidified conditions hydrogen mole fraction increases along the anode channel with increasing current density, however, at higher current densities it decreases monotonically. Different anode and cathode humidified conditions results showed that the cell performance was sufficiently influenced by anode humidification. The reactants and water distribution and membrane conductivity in the cell depended on anode humidification and the related water management. The cathode channel–GDL (Gas Diffusion Layer) interface experiences higher temperature and reduces the liquid water formation at the cathode channel. Indeed, at higher current densities the water accumulated in the shoulder area and exposed higher local current density than the channel area. Higher anode with lower cathode humidified combination showed that the cell had best performance based on water and thermal management and caused higher velocity in the cathode channel. The model was validated through the available literature.  相似文献   

13.
A three-dimensional single-flow channel computational model is used to investigate the performance characteristics of polymer electrolyte fuel cells (PEFC). The combined influence of non-uniform interfacial contact resistance (ICR) and inlet relative humidity (RH), along with the heterogeneous flow properties of the gas diffusion layer (GDL) on the PEFC performance is evaluated. The study considers combinations of full and partial humidification of anode and cathode reactants. Results reveal heterogeneous GDL with non-uniform ICR distribution results in a slight ∼4.4% reduction in current density at 0.3V compared to the homogeneous case. However, under same electrical/flow heterogeneities, the current density is observed to increase by ∼19% to ∼1.3A/cm2 under fully humidified anode and partially humidified cathode (i.e., RHa|RHc = 100%|60%) as compared to ∼1.1A/cm2 under symmetric RHa|RHc = 100%|100%. Interesting observations are made on the temperature distribution and cathodic water fractions. The variation in anodic inlet humidity is observed to have no impact on temperature distribution in the membrane, whereas variation in cathodic inlet humidity is effective in reducing the temperature in the channel regime with a 4K (kelvin) difference among all the cases. It is noted here that the overpotential map is not an indicator for performance loss, at least at full inlet humidity. This parameter is observed to depend on water concentration in the cathode. The study provides a detailed analysis of the distribution of reactant mass fraction, water concentration, current density, temperature, cathodic overpotential, and cell performance for all the simulated cases.  相似文献   

14.
Water management is key in the optimization of proton exchange membrane fuel cell performance and durability. Humidifiers can be used to provide water vapor to cathode air, ensuring the proper operation of proton exchange membrane fuel cells. In this study, water vapor transport characteristics of hollow fiber membrane modules were investigated in shell-tube humidifiers under isothermal conditions, using two different test jig constructions: a convection jig and a diffusion jig. The mass transfer rate of water vapor was evaluated via the impact of various operating parameters, including temperature, flow rate, pressure, and relative humidity of inlet wet air, flow arrangements, and surface area of the tube side. The result was presented by the water vapor transport rate from wet air flow to dry air flow across the hollow fiber membrane. It was found that humidification performance could be improved with higher operating temperature, flow rate, and relative humidity of inlet wet air, lower pressure, larger membrane surface area, higher convection effect, and substituting co-current with counter-current flow configuration.  相似文献   

15.
膜加湿器是保证质子交换膜燃料电池(PEMFC)正常高效运行的重要组成部分.以燃料电池的板式膜加湿器为研究对象,根据热质交换原理对膜加湿器的传热传质过程进行了理论计算,分析了空气质量流量、膜内加湿侧进口温度和膜内加湿侧进口湿度对传热传质过程的影响.在传热方面:当空气质量流量不同时,随着膜内加湿侧进口温度的变化,膜内的热流量变化趋势不一致;当膜内加湿侧进口相对湿度为95%时,随着空气质量流量的变化,膜内热流量变化不大.在传质方面:当加湿侧进口相对湿度不变时,膜中水传输速率随着空气质量流量的增大而减小;当空气质量流量不变时,膜中水传输速率随着加湿侧进口相对湿度的增大而增大.  相似文献   

16.
The present work describes a systematic investigation of the effect of operating temperature, cathode stoichiometry, anode stoichiometry and reactants humidification rate on the behavior of a polybenzimidazole‐based high temperature polymer fuel cell. The effect of reactants humidification was also considered; actually, in real applications, the syngas holds great amounts of water. Furthermore, water diffuses through the membrane and reaches the cathode side where it adds to the water produced by the electrochemical reaction. The investigation is based on the analysis of polarization curves measured under different operating conditions. Anode stoichiometry has no impact on the fuel cell voltage, while cathode stoichiometry and fuel cell temperature are relevant. When the anode stream is humidified, negligible effects take place; conversely, when the cathode stream is humidified, a consistent drop in the fuel cell voltage is observed, with a consequent drop in the power output. When air is saturated at 70 °C, a power loss of 8% and 27% takes place at 0.55 A cm?2 and 0.9 A cm?2, respectively. Such a finding might represent an issue when high power densities are pursued. The effect of cathode humidification was further investigated by means of electrochemical impedance spectroscopy and cyclic voltammetry. Thanks to dedicated tests, the effect of water in the cathode feed stream was clarified. Cathode humidification increases the electrode catalyst active area due to the dilution of the phosphoric acid retained in the electrode. Conversely, the presence of water hinders the oxygen mass transport to the catalyst active sites. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
中空纤维膜加湿系统能从根本上解决空气加湿过程中气液夹带的问题.通过搭建太阳能驱动的中空纤维膜加热加湿系统试验台并在冬季进行实验测试,分析出太阳能辐射量、空气体积流量和热水体积流量对系统加热加湿性能的影响.研究发现提高太阳能辐射量和空气体积流量对系统的加湿能力和热性能系数均有积极影响,而前者的影响更为显著.为了获得最好的...  相似文献   

18.
The objective of the coolant induced variable temperature flow field concept is to maintain high membrane water content along the entire flow field without external humidification and without occurrence of liquid water inside the cell at higher currents. This is achieved by imposing a temperature gradient in the cathode downstream direction in such manner that the product water is just sufficient to maintain close to 100% relative humidity along the entire flow field. The concept must be feasible for stack applications and flexible to enable efficient operation under significantly different operating conditions. The concept is investigated via interactive combination of computational fluid dynamics modeling and experimental validation for two membranes, namely Nafion® 212 and Nafion® 115. Additional calculations are also carried out for a five-cell stack with Nafion® 212 membranes. The results of the computational fluid dynamics model are compared with the experimental data. Calculated and measured current density and relative humidity distributions along the cell give insight in the membrane water content and membrane water flux. With the coolant induced variable temperature flow field concept it is possible to achieve close to 100% relative humidity along the entire flow field without the requirement for external humidification, and to minimize the occurrence of liquid water inside the cell, resulting in improved performance of the cell in comparison with commonly used isothermal operation.  相似文献   

19.
20.
The failure at equally distributing reactants among different channels within the stack leads to uneven reaction and gas concentration distribution in the catalyst layers, which consequently impacts the performance and durability of proton exchange membrane fuel cell stacks (PEMFCs). A three-dimensional, transient, non-isothermal cold start model for PEMFCs with parallel flow-field configuration and coolant circulation is developed in this work to investigate the effects of non-uniform distribution of reactants/coolant inflow rates on the cold start process. The results show that the effect of non-uniform inflow on ice formation amount is obvious and that on the distribution uniformity of current density is apparent over the cold start survival time. Additionally, the simulation predictions show that the non-uniform initial membrane water content distribution due to the purge procedure can significantly increase the rate of ice growth and deteriorate the uniformity of current density distribution in the membrane. It is found that high stoichiometry operating condition is favorable to cold startup, but may result in drying in the membrane at regions close to the channel inlet side. As non-uniform inflow rates issue is inevitable in actual PEMFC stack operation conditions, our results demonstrate that the initial membrane water content and cathode stoichiometry ratio need to be identified to moderate the effects of reactants/coolant inflow maldistribution and to maintain a stable cold start performance for the PEMFC stack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号