首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the nearshore-offshore exchange of hypoxic waters during episodic coastal upwelling events in the nearshore waters of northern Lake Erie using intensive field observations and a validated hydrodynamic and water quality model. We observe wind-induced coastal upwelling events to be the dominant nearshore physical process in the lake which are energized every 5–10 days. When the winds were predominantly blowing from the west or south-west, epilimnetic waters were transported to the offshore bringing in hypolimnetic waters with low temperature (8–10 °C), dissolved oxygen (DO: 0–6 mg L?1) and pH (6–7) to the nearshore zones. During these events, vertical diffusivity coefficients decreased from 10?2 m2 s?1 to values as low as ~ 10?7 m2 s?1. In late summer, the coastal upwelling events in the nearshore waters lower the near bottom DO to hypoxic levels (DO < 2 mg L?1). Lake-wide observations of DO and pH show that they are positively and linearly correlated while in the nearshore DO and pH experience spatial and temporal variability where upwelling events were developed, which were further assessed using a three-dimensional model. The model accuracy to reproduce offshore hypoxia was first assessed on a lake-wide basis using a coarse resolution model for a five-year period (2008–2012) and in nearshore waters using a higher resolution model for 2013. We use the model results to delineate the near bottom areas experiencing hypoxia at time scales longer than 48 h.  相似文献   

2.
We examined the feeding ecology of larval lake whitefish (Coregonus clupeaformis) in Chaumont Bay, Lake Ontario, during April and May 2004–2006. Larvae were collected with towed ichthyoplankton nets offshore and with larval seines along the shoreline. Larval feeding periodicity was examined from collections made at 4-h intervals over one 24-h period in 2005. Inter-annual variation in diet composition (% dry weight) was low, as was spatial variation among collection sites within the bay. Copepods (81.4%), primarily cyclopoids (59.1%), were the primary prey of larvae over the 3-year period. Cladocerans (8.1%; mainly daphnids, 6.7%) and chironomids (7.3%) were the other major prey consumed. Larvae did not exhibit a preference for any specific prey taxa. Food consumption of lake whitefish larvae was significantly lower at night (i.e., 2400 and 0400 h). Substantial variation in diet composition occurred over the 24-h diel study. For the 24-h period, copepods were the major prey consumed (50.4%) and their contribution in the diet ranged from 29.3% (0400 h) to 85.9% (1200 h). Chironomids made up 33.4% of the diel diet, ranging from 8.0% (0800 h) to 69.9% (0400 h). Diel variation in the diet composition of lake whitefish larvae may require samples taken at several intervals over a 24-h period to gain adequate representation of their feeding ecology.  相似文献   

3.
We chronicled the seasonally recurring hypolimnetic hypoxia in Muskegon Lake – a Great Lakes estuary over 3?years, and examined its causes and consequences. Muskegon Lake is a mesotrophic drowned river mouth that drains Michigan's 2nd largest watershed into Lake Michigan. A buoy observatory tracked ecosystem changes in the Muskegon Lake Area of Concern (AOC), gathering vital time-series data on the lake's water quality from early summer through late fall from 2011 to 2013 (www.gvsu.edu/buoy). Observatory-based measurements of dissolved oxygen (DO) tracked the gradual development, intensification and breakdown of hypoxia (mild hypoxia <4?mg DO/L, and severe hypoxia <2?mg DO/L) below the ~6?m thermocline in the lake, occurring in synchrony with changes in temperature and phytoplankton biomass in the water column during July–October. Time-series data suggest that proximal causes of the observed seasonal hypolimnetic DO dynamics are stratified summer water-column, reduced wind-driven mixing, longer summer residence time, episodic intrusions of cold DO-rich nearshore Lake Michigan water, nutrient run off from watershed, and phytoplankton blooms. Additional basin-wide water-column profiling (2011–2012) and ship-based seasonal surveys (2003–2013) confirmed that bottom water hypoxia is an annually recurring lake-wide condition. Volumetric hypolimnetic oxygen demand was high (0.07–0.15?mg DO/Liter/day) and comparable to other temperate eutrophic lakes. Over 3?years of intense monitoring, ~9–24% of Muskegon Lake's volume experienced hypoxia for ~29–85?days/year – with the potential for hypolimnetic habitat degradation and sediment phosphorus release leading to further eutrophication. Thus, time-series observatories can provide penetrating insights into the inner workings of ecosystems and their external drivers.  相似文献   

4.
A comprehensive understanding of the sedimentation dynamics within Lake Winnipeg (surface area: 23,750 km2) and its role in sediment transport in the downstream river system was achieved by determining the properties of lake bottom sediment and patterns of sediment accumulation rates and by constructing a conceptual total (i.e., organic and inorganic) sediment budget. Net deposition was the governing process in the South and North Basins, whereas transportation dominated in the Narrows. The largest fluvial source of sediments to the lake, the Red River, supplies 35% of the total sediment load. Although accumulation rates in profundal zones progressively decreased northward from this source at the south end of the lake, high accumulation rates with low inventories of fallout radionuclides in the northern margin of the North Basin indicate a second sediment source, which was determined to be erosion of north shore banks, which accounts for up to 50% of the total sediment load to the lake. The nearshore-offshore gradient in bottom sediment properties in the North Basin confirmed that the signature of this source can reach at least 20 km southward into the lake. However, the properties of bottom sediments, sedimentation dynamics, and sediment budget suggested that some of the materials eroded from the north shore are exported without interaction with the lake bottom and this local sediment source is the dominant source for the downstream river system. It was concluded that Lake Winnipeg effectively disconnects the downstream Nelson River from sediment transport processes in its upstream watershed (953,250 km2).  相似文献   

5.
The amphipod Diporeia spp. has historically been an important component of the benthic food web of the Laurentian Great Lakes. The Great Lakes Water Quality Agreement included its population density as an indicator of ecological condition for Lake Superior, with target values of 220–320 m?2 in nearshore areas (≤100 m depth) and 30–160 m?2 in offshore areas (>100 m). To assess the status of Diporeia in Lake Superior, we used a probability-based lake-wide survey design to obtain estimates of Diporeia density and biomass in 2006, 2011 and 2016. A PONAR grab sampler was used to collect Diporeia at 50–53 sites each year, with approximately half in the nearshore (<100 m depth) region of the lake and half in the offshore. The mean area-weighted lake-wide density was 395 ± 56 (SE) m?2 in 2006, 756 ± 129 m?2 in 2011, and 502 ± 60 m?2 in 2016. For all years, both density and biomass were greater in the nearshore than in the offshore stratum. The densities for 2006–2016 were 3–5 times higher than those reported from a lake-wide survey conducted in 1973 by the Canada Centre for Inland Waters. The severe declines in Diporeia populations observed in the other Great Lakes during recent decades have apparently not occurred in Lake Superior. Further research is needed to understand spatial and temporal variability of Diporeia populations in Lake Superior to enhance the utility of Diporeia density as an indicator of benthic condition.  相似文献   

6.
After 42 years of stocking in Lake Champlain, recruitment of wild juvenile lake trout (Salvelinus namaycush) was first observed in 2015. Abundance of wild lake trout juveniles was spatially heterogeneous. Recruitment of wild fish to age-1 and subsequent survival are likely related to growth including overwinter growth. We hypothesized that growth potential or growth-related mortality of wild and stocked fish may explain spatial differences in abundance. We collected juvenile (age-0 to 3) lake trout by bottom trawling in the central, north, and south Main Lake every 2–4 weeks during the ice-free season, 2015–2018. The percentage of wild juveniles increased from 27.8% of the total catch in 2015 to 65.7% in 2018. Rates of growth in length and change in condition were compared in wild versus stocked lake trout, among sampling areas, and between seasons (sampling season relative to winter). Wild juveniles grew equally or faster in length than stocked juveniles at the same age, but changed more slowly in condition. There was a higher percentage of wild juveniles in the central sampling area than the north and south, but no differences in growth among sampling areas. Wild and stocked fish grew in length over winter, but most cohorts (6 of 7) maintained or increased condition. Results indicate high growth potential of wild juvenile lake trout and progress toward population restoration.  相似文献   

7.
Freshwater lakes are increasingly recognized as significant sources of atmospheric methane (CH4), potentially offsetting the terrestrial carbon sink. We present the first study of dissolved CH4 distributions and lake-air flux from Lake Winnipeg, based on two-years of observations collected during all seasons. Methane concentrations across two years had a median of value of 24.6 nmol L-1 (mean: 41.6 ± 68.2 nmol L-1) and ranged between 5.0 and 733.8 nmol L-1, with a 2018 annual median of 24.4 nmol L-1 (mean: 46.8 ± 99.3 nmol L-1) and 25.1 nmol L-1 (mean: 38.8 ± 45.2 nmol L-1) in 2019. The median lake-air flux was 1.1 µmol m?2 h?1 (range: 0.46–70.1 µmol m?2h?1, mean: 2.9 ± 10.2 µmol m?2 h?1) in 2018, and 5.5 µmol m?2h?1 (range: 0.0–78.4 µmol m?2 h?1, mean: 2.7 ± 8.5 µmol m?2 h?1) in 2019, for a total diffusive emission of 0.001 Tg of CH4-C yr?1. We found evidence of consistent spatial variability, with higher concentrations near river inflows. Significant seasonal trends in CH4 concentrations were not observed, though fluxes were highest during the fall season due to strong winds. Our findings suggest Lake Winnipeg is a CH4 source of similar mean magnitude to Lake Erie, with lower concentrations and fluxes per unit area than smaller mid- to high-latitude lakes. Additional work is needed to understand the factors underlying observed spatial variability in dissolved gas concentration, including estimations of production and consumption rates in the water column and sediments.  相似文献   

8.
Lake Okeechobee is a large, shallow subtropical lake, located in south Florida. Over the last several decades, Lake Okeechobee has experienced accelerated eutrophication due to excessive phosphorus loads from agricultural run‐off. Recycling of phosphorus from bottom sediments through resuspension is critical to addressing eutrophication of the lake and for water quality management. The present study investigates the impacts of wind waves on sediment transport in Lake Okeechobee, using measured data and the Lake Okeechobee Environmental Model (LOEM). The LOEM was fully calibrated and verified with more than 10 years of measured data in previous studies. Analysis of the measured data indicates significant wave height (SWH) and suspended sediment concentration are closely correlated to the wind speed in the lake. The nonlinear interaction of high‐frequency wind waves with relatively low‐frequency currents in the boundary layer plays a key role in sediment deposition/resuspension. Without considering the effects of wind waves, the bottom shear stress can be greatly underestimated. The spatial variations of key variables for sediment modelling, including SWH, water depth, orbital velocity, current velocity, bottom shear stress and sediment concentration, are discussed. In general, the near‐bottom wave velocity (and the associated bottom shear stress) is greater than or the same order of magnitude as the near‐bed current velocity (and the associated bottom shear stress) in this shallow water system. Although the sediment zones of Lake Okeechobee were described in previous studies, few published papers discussed its formation mechanisms. The findings of the present study include that the multiyear averaged bottom shear stress with wind‐wave effect plays a key role in forming the spatial patterns of the sediment zones. The study results are currently being used in lake management and in developing strategies for reducing phosphorus in the lake.  相似文献   

9.
Sediment cores from Lake Qarun provide a record of mid-late Holocene climatic changes in Northern and Eastern Africa as well as environmental changes due to the activities of ancient Egyptians. We used sedimentological, mineralogical, and geochemical analyses of the cores to investigate long-term variations in lake level due to changing hydrologic inputs. An age model based on three paired 14C and paleomagnetic measurements suggests that the base of the sediment cores is as old as ∼ 5000 B.C.E. Geochemical analyses indicated that lake sediments were derived from Nile floods with an admixture of Saharan sand. Laminated endogenic carbonate-rich clayey silt lithofacies with benthic diatoms are indicative of relatively low lake levels, saline waters and dry conditions; massive lithofacies with planktonic diatom species are indicative of relatively high lake levels, fresh waters and humid conditions. Faintly laminated clayey silt lithofacies suggest intermediate conditions. Variations in lithology as well as diatom composition suggest that the lake level has varied from relatively high levels in its early history to lower levels in later years although there have been numerous cycles in water level over the past 7000 years. A combination of climate changes in the source area of the Nile River as a result of monsoon dynamics; climatic changes in the setting area of the Lake Qarun; and human activities through the dynasties in Egypt produced these variations in lake level.  相似文献   

10.
Wakwa is a region in north Cameroon characterized by intensive cattle production. This study evaluated the physicochemical characteristics of the waters in Lake IRAD, located near Wakwa, which is the main water source for cattle grazing in this area. Water samples were collected at four sampling sites during the rainy and dry seasons (April, July, October and February). The chemical composition of the water samples was analysed for various constituents, including nitrate (NO3), chloride (Cl?), phosphate (PO43?), bicarbonate (HCO3?), calcium (Ca), magnesium (Mg), manganese (Mn), aluminium (Al), zinc (Zn), copper (Cu), iron (Fe), nickel (Ni), cadmium (Cd), ammonia–nitrogen (NH4–N) and organic matter (OM). The mineral composition varied significantly (P < 0.05) with the sampling period. High concentrations of zinc (0.96 mg L?1) and dissolved iron (1.23 mg L?l) were observed during the dry season. Total iron (3.25 mg L?1), OM (15.4 mg of O2 L?1), nitrate (28.82 mg L?1) and NH4–N (1.05 mg L?1) concentrations were highest during the rainy season. The iron, OM and NH4–N concentrations were higher than the USEPA‐recommended values (0.2 mg L?1, 4 mg of O2 L?1 and 0.5 mg L?1, respectively). The phosphate, copper, nickel and cadmium concentrations, considered as the polluting substances, were present in negligible concentrations, being below the detection limits of the analytical techniques used to measure them. The high iron, OM and nitrogen concentrations were attributed to water‐leached soil run‐off, as well as the activity of animals in the lake. Sampling sites 1 and 2, which were used mostly by cattle, were observed to have the highest concentrations of NH4–N, compared with sites 3 and S (exit point). It will be necessary to delimit cattle access points to the lake to reduce this type of contamination of drinking water.  相似文献   

11.
This paper analyzes high-resolution lidar data to estimate sediment export to the Pennsylvania Lake Erie littoral zone from lakefront bluff retreat under relatively unique lake-level conditions: approximately a decade of average lake level transitioning into a mild transgression. Analysis identifies bluff-failure patterns important to coastal hazard planning, possible feeder-bluff conservation areas to preserve sediment supply, and data pertinent to sand management in the western Erie County littoral cell (WECLC) and at Presque Isle State Park in the next-downdrift cell.Based on 2007–2015 bluff-face mapping, there were net losses of 318,250 m3 of total-sediment and 105,700 m3 of sand+ (sand-boulders) to the littoral zone. On an average annual basis, bluffs thus exported 39,800 m3 of total-sediment and 13,300 m3 of sand+ to the WECLC. Exports of sand+ by six HUC-12 watersheds ranged from ~0 to 4600 m3/yr, with ~ 30% supplied by Crooked Creek watershed bluffs that occupy only 18% of the coast. Sand+ export volumes reported here were ~65% lower than prior research covering different lake-level phases. Understanding sediment export during periods of average lake level is important because such lake-level phases occur in the record and will likely recur. Incorporating a decade-scale low sediment-supply scenario for sand management in the Presque Isle littoral cell would permit fine-tuning of estimates of sand nourishment needed to mitigate ongoing beach erosion. Uncertainty in bluff-face change can be minimized by expanding data-comparison windows; future tracking of sediment export from Pennsylvania bluffs may not need lidar surveys any more frequently than once every 10–15 years.  相似文献   

12.
Efforts to restore self-sustaining lake trout (Salvelinus namaycush) populations in the Laurentian Great Lakes have had widespread success in Lake Superior; but in other Great Lakes, populations of lake trout are maintained by stocking. Recruitment bottlenecks may be present at a number of stages of the reproduction process. To study eggs and fry, it is necessary to identify spawning locations, which is difficult in deep water. Acoustic sampling can be used to rapidly locate aggregations of fish (like spawning lake trout), describe their distribution, and estimate their abundance. To assess these capabilities for application to lake trout, we conducted an acoustic survey covering 22 km2 at Sheboygan Reef, a deep reef ( < 40 m summit) in southern Lake Michigan during fall 2005. Data collected with remotely operated vehicles (ROV) confirmed that fish were large lake trout, that lake trout were 1–2 m above bottom, and that spawning took place over specific habitat. Lake trout density exhibited a high degree of spatial structure (autocorrelation) up to a range of ∼ 190 m, and highest lake trout and egg densities occurred over rough substrates (rubble and cobble) at the shallowest depths sampled (36–42 m). Mean lake trout density in the area surveyed (∼ 2190 ha) was 5.8 fish/ha and the area surveyed contained an estimated 9500–16,000 large lake trout. Spatial aggregation in lake trout densities, similarity of depths and substrates at which high lake trout and egg densities occurred, and relatively low uncertainty in the lake trout density estimate indicate that acoustic sampling can be a useful complement to other sampling tools used in lake trout restoration research.  相似文献   

13.
Lake charr exhibit morphological diversity in large North American lakes, largely attributed to habitat partitioning. Bathythermal habitats of lean lake charr have been assessed but remain largely unknown for other lake charr ecotypes. Popup satellite archival tags (PSATs) were used to determine depth and temperature profiles of lean (n = 15), siscowet (n = 16) and redfin (n = 3) lake charr ecotypes in Lake Superior during segments of the year. Monthly median depths of leans were < 20 m throughout the year while the median depth of redfins was 24–32 m (June-September). Monthly median depth of siscowets ranged from 103 to 204 m but they exhibited four distinctive patterns: deep (>80 m), shallow (<10 m), extreme vertical movements (>80–0 m), and high frequency vertical movements between 100 and 125 m. Siscowets were the most stenothermal with habitat temperatures generally 4–5 °C but not exceeding 12 °C. Leans were found as low as 0 °C (January-March) and up to 15 °C (July-September). Median monthly habitat temperatures for redfins were 1–3 °C colder than leans during July-September. PSATs confirmed that siscowets exhibit extreme vertical movements and may feed near the surface. The timing and duration of the extreme vertical movements exhibited by siscowets did not appear to be associated with time of day (i.e., not diel vertical movements) and may be described as opportunistic movements presumably related to foraging. Data obtained from the PSATs reinforces the view that lake charr are highly adaptive and can thrive in cold, oligotrophic lakes by optimizing the use of the entire water column.  相似文献   

14.
The analysis of both the mineralogical and geochemical composition and the stratigraphy of Holocene sediments of Lake Onego provided a novel interpretation of their genesis. Their mineral composition suggests that Holocene bottom sediments generally inherit the composition of terrigenous material that enters the lake with river runoff. The predominant authigenic minerals include biogenic opal from diatom skeletons, Fe-illite, and Fe-chlorite, which are the main iron mineral forms in bottom sediments of Lake Onego. Unstable suspension components (illite and chlorite) transform into their ferruginous varieties under humid climate conditions and high concentrations of iron and silicon in the lake waters. Both the presence of ferromanganese nodules in the uppermost part of bottom sediments of Lake Onego and their formation result from the location of the lake in the northern humid zone, geological composition of Fennoscandian crystalline rocks on the Lake Onego watershed, and the presence of an oxidative geochemical barrier into the lake sediment sequence. Late Holocene bottom sediments are represented by two types of sequences: 1) Fe-Mn enriched layers are formed near the sediment-water interface under oxygenated near bottom waters, and 2) such layers are not formed due to low concentrations of oxygen in water; but there are also non-laminated, homogeneous greyish-green silts, similar to those present in the lower parts of the first type of cores. Sedimentation rates (~0.10 cm y−1) were determined by 210Pb- and 137Cs geochronologies.  相似文献   

15.
With its important geographical location and status as the largest saltwater body in China, Qinghai Lake plays a vital role in the ecological environment of the northeastern part of the Qinghai-Tibet Plateau. Due to climate change and the subsequent adjustment of Qinghai Lake’s tourism policy, it is necessary to understand groundwater discharges in southeast of Qinghai lake both for ecological protection and risk prevention. This study used radium isotopes 223Ra and 224Ra to trace groundwater discharges and nutrients carried into the lake. The spatial characteristics of Ra isotopes with greater activity in the upper and bottom layers in the lake indicated that they were influenced by inputs of shallow groundwater and diffusion from sediments. The average 224Ra diffusion flux of the sediments in the Lake was 33.54 dpm m?2 d?1. Based on the 224Ra mass balance model, the discharge flux of shallow groundwater in this region was estimated to be 3.49 × 106 ~ 3.68 × 106 m3 d?1. The PO43? and SiO2 fluxes carried into the southeastern of the lake by groundwater were 1.78 × 1011 ~ 1.88 × 1011 mg/y and 2.22 × 1012 ~ 2.34 × 1012 mg/y, respectively. It is thus essential to monitor shallow groundwater discharge into Qinghai Lake for the protection of the water environment and prevention of potential ecological risks.  相似文献   

16.
Understanding the spatial use of reintroduced fish is useful for fisheries management and evaluating restoration success. Atlantic salmon (Salmo salar) were reintroduced into Lake Ontario in the 1990s; however, the movement ecology of these land-locked fish is unknown. Using acoustic telemetry and Floy tag mark-recaptures, we examined seasonal home range and space use of Atlantic salmon in Lake Ontario. Hatchery-raised adult Atlantic salmon were tagged with acoustic transmitters (n = 14; 8 with depth sensors) or Floy tags (n = 1915) and released. Both acoustic telemetry and Floy tag recaptures (n = 90) indicated cross lake movements, and home ranges encompassed nearly the entire lake in summer but was smaller in winter. Movements were nearshore (<2 km from shore) from spring to summer at ~20 m bathymetric depths, with movements closer to shore in the fall, and further offshore (~5.5 km from shore and 45 m bathymetric depths) in winter. Depth use was relatively shallow (<4 m) with occasional deeper dives (max = 28.5 m), and small diel vertical movements (1–5 m), moving deeper during daytime, consistent with ocean movements of Atlantic salmon. There appears to be spatial segregation among Atlantic salmon and other Lake Ontario salmonids, however, overlap likely occurs in nearshore waters during the spring. Wide-ranging movements of Atlantic salmon in binational (Canada/USA) waters reflects the importance of government agencies collaborating to ensure sustainable fisheries and the coordination of species restoration activities. This is the first study to provide detailed spatial use of Lake Ontario Atlantic salmon to assist in the management of this reintroduced species.  相似文献   

17.
Lake whitefish Coregonus clupeaformis are a native coldwater species supporting important recreational and commercial fisheries in the Laurentian Great Lakes. Climate-related changes in water temperature may have important implications for the future sustainability of these fisheries. However, projecting future habitat availability is difficult because limited information is available on lake whitefish thermal ecology in the region. In this study, archival temperature loggers were implanted into 400 lake whitefish from northwestern Lake Michigan, including Green Bay, during October–November 2017. Loggers recorded temperature for 11 months at 4-hr intervals. Thirteen recovered temperature loggers were used in analyses. In winter (1 December–31 March), temperatures occupied by lake whitefish ranged from 0 to 8.0 °C, while in spring (1 April–31 May) temperatures ranged from 0 to 20.0 °C. In summer (1 June–15 September) and fall (16 September–7 November), lake whitefish occupied temperatures of 4–21.5 and 4–21.0 °C, respectively. Average temperatures in summer (10.8 °C) were within the previously proposed optimal temperature range (10–14 °C) and broad thermal niche (7–17 °C); however, 58% of observations were outside the optimal temperature range and 11% of observations were outside the broad thermal niche. Our results suggest that lake whitefish from northwestern Lake Michigan inhabit temperatures both above and below previously reported expected temperature ranges. This study provides initial insights on lake whitefish thermal ecology in Lake Michigan and can be used as a baseline for future work aimed at determining how lake whitefish habitat availability may change in the future.  相似文献   

18.
High altitude ecosystems have important natural ecological functions but are under increasing impacts from human activities and climate change. A detailed analysis of the water chemistry of Lake Rara, a high mountain lake in western Nepal, was carried out in October 2015 and April 2016. A total of 31 water samples were collected. Major ions (Ca2+, Mg2+, Na+, K+, SO42?, NO3? and Cl?) were analysed by ion chromatography. Si and PO43? were analysed following the standard protocols. Conductivity, pH, total dissolved solids (TDS), turbidity and dissolved oxygen (DO) were measured on‐site. The lake is oligotrophic characterized by low PO43? concentration (0.06 ± 0.01 mg/L), high DO values (6.73 ± 0.06 and 10.89 ± 0.86 mg/L), alkaline pH (8.42 ± 0.3 and 8.32 ± 0.23) and low conductivity (189.93 ± 5.3 and 189.22 ± 5.8 μS/cm). The concentrations of the major cations were in the order of Ca2+ > Mg2+ > K+ > Na+ (during both seasons), and for anions, it was HCO3? > SO42? > Cl? > NO3? and HCO3? > Cl? > NO3? > SO42? during postmonsoon and premonsoon, respectively. One‐way ANOVA revealed significant seasonal variations (p  < 0.05) in most of the physicochemical parameters. The increased concentrations of most of the ions in the premonsoon time probably reflect long‐range transport of materials through dry deposition, whereas higher concentrations of NO3? and Cl? in some sites possibly reflect the localized impacts of settlement and grazing. The lake water was classified as Ca(Mg)HCO3. High (Ca2+ + Mg2+)/Tz+ ratio (0.97 in postmonsoon and 0.95 in premonsoon) and low (Na+ + K+)/Tz+ ratio (0.03 in postmonsoon and 0.04 in premonsoon) confirm carbonate weathering as the principal source of major ions with bedrock geology governing the water chemistry. The findings of this study build on the baseline dataset for assessing future anthropogenic influence on the lake and subsequent development for future lake management strategies.  相似文献   

19.
Wild reproduction by stocked lake trout Salvelinus namaycush in Lake Ontario has yet to produce a self-sustaining population, requiring a reliance on stocking. Once released, age-1 juvenile lake trout are not typically surveyed until age-2, creating a gap in knowledge of fine-scale post-release behaviors. A method to track fine-scale movements and estimate mortality of juvenile lake trout could complement standard survey methods and benefit management decisions regarding stocking locations. We used acoustic telemetry to estimate post-stocking mortality and observe fine-scale spatial and temporal movements of 38 hatchery-reared, age-1 lake trout from an offshore stocking site in the eastern basin of Lake Ontario from 2017 to 2018. Cumulative post-stocking mortality was estimated at 5.3%, 10.5%, and 26.3% after one week, one month and one year, respectively. The majority of lake trout (68.4%) emigrated from the stocking location within two months and entered deep water (~50 m) once warm-water incursions at the stocking site exceeded lake trout thermal preferences (15 °C). Lake trout made large movements (i.e., median 1.9 km, maximum 12.4 km straight-line distance) within the first hour post-release and had an average swimming speed of 1.64 km?hr?1over the first day. There was no statistically significant relationship between total distance traveled and time of day, although distance traveled tended to be greater during crepuscular and dark periods compared to daylight. Our results provide a conservative estimate of post-release mortality and reveal behaviors of hatchery-reared juvenile lake trout that may be helpful when selecting stocking locations beneficial to restoration program goals.  相似文献   

20.
The distribution, density, biomass and size-structure of the zebra mussel (Dreissena polymorpha) population in Lake Winnipeg were examined between 2017 and 2019. Zebra mussels have colonized most of the available hard substrate in the south basin and Narrows region, but colonization of the north basin remains low at present, even on suitable substrate. Numerical densities and shell free biomass peaked at 5530 ± 953 m?2 and 64.7 ± 57.9 g shell free dry mass m?2 respectively. The distribution appeared to be strongly limited by substrate type and availability, with further limitations on the distribution imposed by physical disturbance in shallow waters and unsuitable substrate in deeper areas of the lake. Zebra mussels <1 year old dominated the populations, and individuals >18 mm were exceedingly rare. Poor recruitment was observed at sites along the eastern side of the south basin compared to elsewhere in the lake. The proximate causes of these differences in colonization success and recruitment are not clear, but may be in part due to heterogeneous patterns of key physico-chemical environmental conditions such as calcium concentrations required for successful development of juvenile mussels and colder water temperatures in the north basin. This study provides a baseline of information on which to track further expansion of zebra mussels in Lake Winnipeg and assist efforts to develop an understanding of how zebra mussels may affect the ecology of Lake Winnipeg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号