首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 187 毫秒
1.
具有不同翼刀的压气机叶栅二次流结构分析   总被引:3,自引:1,他引:2  
给出了具有端壁翼刀、吸力面翼刀和组合翼刀的可控扩散叶型(CDA)压气机叶栅的二次流结构简图.端壁翼刀和吸力面翼刀分别通过阻断端壁横向流动和展向流动来对栅内二次流进行控制,不同程度上可使叶栅总损失得到降低;组合翼刀叶栅兼顾了端壁翼刀、吸力面翼刀叶栅中二次流的特点;最佳组合翼刀并不是最佳端壁翼刀和最佳吸力面翼刀的简单组合,它需要一个更详细的优化过程.不同翼刀在不同程度上改善栅内流动状况的同时,也伴随着端壁翼刀涡、吸力面翼刀涡和类通道涡的形成和发展,这使栅内旋涡结构较常规叶栅更为复杂.   相似文献   

2.
压气机叶栅内不同高度端壁翼刀的实验   总被引:1,自引:0,他引:1  
通过采用五孔探针在低速平面风洞上测量压气机叶栅流场的方法,研究了不同高度和周向位置的端壁翼刀对叶栅能量损失及二次流速度矢量的影响.结果表明,使叶栅总损失降低的最佳周向安装位置是距离吸力面70%相对节距处,最佳翼刀高度为5 mm;存在使叶栅总损失降低的极限翼刀高度.当翼刀高度增加时,翼刀涡更加清晰.安装翼刀可以改变叶栅端壁损失的分布,进而控制吸力面/端壁角区的流动,改善叶栅的气动性能.   相似文献   

3.
端壁翼刀控制压气机叶栅二次流的机理研究   总被引:4,自引:0,他引:4  
对CDA压气机直叶栅和具有不同流向位置和不同几何参数的端壁翼刀叶栅内三维粘性流场进行了数值模拟.结果表明,端壁翼刀主要通过阻断马蹄涡压力面分支汇入通道涡和有效产生反向翼刀涡来控制二次流.加装在距叶片压力面30%节距处且高度为1/3来流附面层厚度、占据前3/4流道的翼刀布置方式为本文所给出的最佳翼刀位置.  相似文献   

4.
在0°,6°,12°和-6°冲角下,对CDA常规直叶栅和具有端壁翼刀的压气机叶栅内三维粘性流场进行了数值研究,分析了冲角变化对端壁翼刀最佳位置的影响。结果表明,正冲角下,翼刀最佳位置向吸力面方向有所偏移,并且在大正冲角下,这种现象更加明显。距压力面40%节距处为最佳翼刀位置;负冲角下,最佳位置虽有向压力面移动的趋势,但不明晰。   相似文献   

5.
对CDA常规直叶栅和三种具有不同高度端壁翼刀压气机叶栅内三维粘性流场进行了数值模拟。计算结果表明,翼刀偏向吸力面一侧上方有反向翼刀涡产生;随着翼刀高度增加,对横向流动的阻断作用增强的同时,翼刀周围损失有所增加;1/3附面层厚度为加装翼刀的最佳翼刀高度,可使叶栅损失降低9%。实验与计算结果吻合较好。   相似文献   

6.
不同周向位置端壁翼刀对压气机叶栅损失影响的实验研究   总被引:1,自引:0,他引:1  
在低速大尺寸叶栅风洞上通过详细测量叶栅流场,研究了叶栅端壁上不同周向位置处加装端壁翼刀对压气机叶栅损失和二次流的影响。实验结果表明,合理选择翼刀安装位置,可有效地控制压气机叶栅的二次流,降低叶栅的总损失。进一步对实验方案中叶栅总损失最小的翼刀位置的叶栅内流场进行了测量,分析了安装翼刀后流场内涡系结构的变化,探讨了翼刀涡的形成和发展变化。   相似文献   

7.
不同长度端壁翼刀对压气机叶栅二次流影响的数值研究   总被引:10,自引:5,他引:5  
对可控扩散叶型(CDA)常规直叶栅和三种具有不同长度和流向位置的端壁翼刀叶栅内的三维粘性流场进行了数值模拟。结果表明,不同长度端壁翼刀都不同程度上改善了栅内的气流流动状况;较小长度的翼刀所产生的附加损失也较小;反向翼刀涡的产生与流道内横向流动的强弱息息相关。计算结果表明,占据前3/4流道长的翼刀为最佳翼刀。   相似文献   

8.
涡轮叶栅端壁区流动的实验研究   总被引:1,自引:0,他引:1  
本文在大尺寸低速开式叶栅传热风洞中对一种高压涡轮导向叶栅中的流场进行了实验研究。采用五孔针对5个雷诺数下的叶栅端壁区三维流场进行了测量,并用线簇和小球浮动法对5个工况的流动进行了流场显示。实验结果表明:马蹄涡压力面分支在向吸力面运动的过程中,破坏了来流附面层的结构,在马蹄涡压力面分支之后,叶栅通道中产生了一个新的从压力面到吸力面的新附面层,新附面层的厚度小于来流附面层厚度;三维流动区约占叶栅通道的40%;雷诺数的增大将增强端壁区的三维流动。从流场显示图片可以观测叶片吸力面靠近端壁的角涡形成与发展,以及吸力面上的三角形区域;流场显示的通道涡大小与流场测量结果吻合。本文的实验结果有助于分析端壁表面和叶片表面换热特性的形成机理。   相似文献   

9.
1引言在叶轮机械叶栅内流动控制中,可以通过在叶片吸力面、端壁上安装翼刀或隔片,控制二次流的发展,降低二次流损失,其中将翼刀加装在吸力面上的控制方式即为吸力面翼刀控制技术。吸力面翼刀主要是通过阻断端壁附面层和叶片吸力面附面层近端壁处低能流动沿吸力面的展向迁移来对  相似文献   

10.
翼刀技术是附面层控制技术的一种,主要是通过有效阻断端壁附面层或叶片吸力面附面层近端壁处低能流体的横向迁移或径向迁移以及反向翼刀涡的影响来控制二次流。国外对此项研究起步较早,重点集中在对汽轮机叶栅的实验研究上;而国内在近几年,才开始了对压气机叶栅中应用翼刀技术的实验和计算研究工作。  相似文献   

11.
压气机通道端壁附面层区叶片载荷分布研究   总被引:1,自引:0,他引:1  
为了探索叶片载荷分布对端壁附面层区流动的影响,设计出3套平面叶栅,叶片载荷分别趋前、居中和靠后。对于低速流动,采用实验和三维Navier-Stkoes方程方法对叶片表面、叶栅出口流场进行了研究。研究表明:叶片载荷靠后叶片(No.3)性能较叶片载荷趋前(No.1)和居中(No.2)叶片差;No.2叶片与No.1叶片比较,出口损失小,但落后角较大,扩压能力较小;在进口端壁附面层一定时,叶片前缘附近的端壁附面层区叶片力亏损变化与叶片力变化呈正相关;端壁面与叶片吸力面之间构成的角区内角涡,没有造成靠近后缘端壁附面层区吸力面静压明显下降。   相似文献   

12.
涡轮平面叶栅非轴对称端壁优化设计   总被引:2,自引:1,他引:1  
开发了一套造型灵活直观、网格生成速度快的涡轮平面叶栅非轴对称端壁优化设计工具,该工具的核心技术是非均匀有理B样条(NURBS)曲面造型和网格变形.在此基础上以商业软件Isight为优化驱动器,以CFX为求解器,搭建了非轴对称端壁优化设计流程.以Pack B涡轮平面叶栅为例,对其进行了非轴对称端壁优化设计.优化后涡轮平面叶栅总压损失系数减小了12.96%.结果表明:涡轮平面叶栅端部的静压分布改变削弱了涡轮平面叶栅通道中马蹄涡、通道涡的强度,提高了涡轮平面叶栅的气动性能.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号