首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Visual pigments, oil droplets and photoreceptor types in the retinas of four species of true chameleons have been examined by microspectrophotometry. The species occupy different photic environments: two species of Chamaeleo are from Madagascar and two species of Furcifer are from Africa and the Arabian Peninsula. In addition to double cones, four spectrally distinct classes of single cone were identified. No rod photoreceptors were observed. The visual pigments appear to be mixtures of rhodopsins and porphyropsins. Double cones contained a pale oil droplet in the principle member and both outer segments contained a long-wave-sensitive visual pigment with a spectral maximum between about 555 nm and 610 nm, depending on the rhodopsin/porphyropsin mixture. Long-wave-sensitive single cones contained a visual pigment spectrally identical to the double cones, but combined with a yellow oil droplet. The other three classes of single cone contained visual pigments with maxima at about 480–505, 440–450 and 375–385 nm, combined with yellow, clear and transparent oil droplets respectively. The latter two classes were sparsely distributed. The transmission of the lens and cornea of C. dilepis was measured and found to be transparent throughout the visible and near ultraviolet, with a cut off at about 350 nm.  相似文献   

2.
The spectral absorption characteristics of the retinal photoreceptors of the blue tit (Parus caeruleus) and blackbird (Turdus merula) were investigated using microspectrophotometry. The retinae of both species contained rods, double cones and four spectrally distinct types of single cone. Whilst the visual pigments and cone oil droplets in the other receptor types are very similar in both species, the wavelength of maximum sensitivity (λmax) of long-wavelength-sensitive single and double cone visual pigment occurs at a shorter wavelength (557 nm) in the blackbird than in the blue tit (563 nm). Oil droplets located in the long-wavelength-sensitivesingle cones of both species cut off wavelengths below 570–573 nm, theoretically shifting cone peak spectral sensitivity some 40 nm towards the long-wavelength end of the spectrum. This raises the possibility that the precise λmax of the long-wavelength-sensitive visual pigment is optimised for the visual function of the double cones. The distribution of cone photoreceptors across the retina, determined using conventional light and fluorescence microscopy, also varies between the two species and may reflect differences in their visual ecology. Accepted: 8 January 2000  相似文献   

3.
The visual receptors in the retina of the passeriform bird Leiothrix lutea were examined microspectro-photometrically. The rods had a maximum absorbance close to 500 nm. Four spectrally different classes of single cone were identified with typical combinations of photopigments and oil droplets: a long-wave sensitive cone with a photopigment P568 and a droplet with a cut-off wavelength at 564 nm, a middle-wave sensitive cone with a P499 and a droplet with a cut-off at 506 nm, a short-wave sensitive cone with a P454 and a droplet with maximum absorbance below 410nm and an ultraviolet sensitive cone with a P355 and a transparent droplet. Double cones possessed a P568 in both the principal and accessory members. A pale droplet with variable absorbance (maximal at about 420 nm) was associated with the principal member whereas the ellipsoid region of the accessory member contained only low concentrations of carotenoid. The effective spectral sensitivities of the different cone classes were calculated from the characteristic combinations of oil droplets and photopigments and corrected for the absorbance of the ocular media. Comparison of these results with the behavioural spectral sensitivity function of Leiothrix lutea suggests that the increment threshold photopic spectral sensitivity of this avian species is mediated by the 4 single cone classes modified by neural opponent mechanisms.Abbreviations LWS long wave sensitive - MWS middle wave sensitive - SWS short wave sensitive (cones)  相似文献   

4.
A microspectrophotometric study was conducted on the retinal photoreceptors of four species of bird: cut-throat finches (Amadina fasciata), gouldian finches (Erythrura gouldiae), white-headed munias (Lonchura maja) and plum-headed finches (Neochmia modesta). Spectral characteristics of the photoreceptors in all four species were very similar. Rods contained a medium-wavelength-sensitive visual pigment with a wavelength of maximum absorbance at 502-504 nm. Four spectrally distinct types of single cone contained a visual pigment with wavelength of maximum absorbance at either 370-373 nm (ultraviolet-sensitive), 440-447 nm (short-wavelength-sensitive); 500 nm (medium-wavelength-sensitive) or 562-565 nm (long-wavelength-sensitive). Oil droplets in the ultraviolet-sensitive single cones showed no detectable absorption between 330 nm and 800 nm. Oil droplets in the short-, medium-, and long-wavelength-sensitive single cones had cut-off wavelengths at 415-423 nm, 510-520 nm and 567-575 nm, respectively. Double cones contained the visual pigment with wavelength of maximum absorbance at 562-565 nm observed in long-wavelength-sensitive single cones. Only the principal member of the double cone pair contained an oil droplet (P-type, cut-off wavelength at 414-489 nm depending on species and retinal location). Spectral transmittance of the intact ocular media of each species was measured along the optic axis. Wavelengths of 0.5 transmittance for all species were very similar (316-318 nm).  相似文献   

5.
Frozen semithin sections and unembedded retinal pieces were investigated by immunocytochemistry using two antibodies produced against visual pigments in our laboratory. One was a polyclonal serum (AO) raised against bovine rhodopsin, while the other one was a monoclonal antibody (COS-1) produced against an epitope present in a cone visual pigment. AO stained, as expected, rod outer segments; in addition it also recognized a single cone characterized by a deep yellow oil droplet as well as another single cone with a yellowish green oil droplet. In contrast, COS-1 labelled both members of the double cones; the principal member having a yellowish-green oil droplet and the accessory member. COS-1 also stained a single cone type exhibiting a large red oil droplet.  相似文献   

6.
Four spectral classes of cone in the retinas of birds   总被引:4,自引:0,他引:4  
Summary The spectral sensitivity of 15 species of birds has been measured by recording transretinal voltages from opened eyecups. With suitable combinations of colored adapting lights, we find that a variety of passerines have four peaks of photopic sensitivity, with maxima at 370, 450, 480, and 570 nm. Additional sensitivity maxima at 510 nm are found in some species. The spectral sensitivity functions are not altered by bathing the retinas in 50 mM sodium aspartate, suggesting that they reflect the properties of cones and do not result from inhibitory interactions between retinal interneurons.Comparison of the results with a general mathematical model that describes spectral sensitivity functions recorded extracellularly from populations of receptors in different states of adaptation (Goldsmith 1986) shows that the retinal spectral sensitivity functions are consistent with the presence of (at least) four types of cone, but indicate as well that many of the cones that are maximally sensitive in the blue and violet likely contain oil droplets that attenuate the deep violet and near uv.  相似文献   

7.
Summary Localization of iodopsin in the retina of the chicken and Japanese quail was investigated immunohistochemically with the use of monoclonal antibodies (R1-R4) highly specific for R-photopsin (protein moiety of iodopsin). In paraffin sections of the retina, the outer segments of double cones (principal and accessory cones) and of one particular type of single cones were labeled with the antibodies. In addition, reticular cytoplasmic structures, probably representing the Golgi apparatus in a position close to the vitreous pole of the paraboloid and to the outer limiting membrane were intensely stained in the cone cells bearing an immunoreactive outer segment. In whole-mount preparations, 5 types of cone cells were identified according to the color of oil droplets, i.e., red, yellow, pale-green (principal member of double cones), pale-blue and clear, in addition to a sixth type devoid of an oil droplet (accessory member of double cones). The immunohistochemical analysis of the preparations revealed that R-photopsin (suggesting the presence of iodopsin) is localized in the outer segments of both the principal and accessory members of double cones, and the population of single cones displaying a red oil droplet. Other cones endowed with a yellow, blue or clear oil droplet were not labeled with the antibodies used. Similar results were obtained in the retina of the Japanese quail.  相似文献   

8.
The chick retina has four morphological cone types that differ not only in shape, but also in the visual pigment in the outer segment, in the colour of the oil droplet in the inner segment and in synaptic connectivity. Neither the type of droplet nor the visual pigment has been definitively established for the four cone types. The main aim of the present work has been the isolation of entire live photoreceptors in order to study the oil droplet colour in each cone type and to quantify each type. We have improved an earlier retinal cell isolation method and obtained large numbers of entire cones. Principal cones (27% of the cones) possess a yellow or colourless droplet. Accessory cones (27% of the cones) all contain a small pale green droplet. Straight cones (44% of the cones) have a red, orange, yellow, or colourless droplet. Oblique cones (1.66% of the cones) all have a colourless droplet. We have found that straight cones with a red, orange, or yellow droplet differ in terms of the position of the nucleus and their percentage and conclude that they are distributed in three rows in the outer nuclear layer (ONL) of the central retina. Our study of 4,6-diamidino-2-phenylindole-stained retinal sections has revealed three rows of nuclei instead of the two currently thought to form the ONL. Together, our results show a larger cone diversity than previously known, suggest a larger functional diversity and provide an efficient method for isolating entire chick photoreceptors. This work was supported by grants from the Dirección General de Investigación, Ministerio de Educación y Ciencia of Spain (no. BFU2005-08786-C02-01) and from the Comunidad de Madrid, Spain (no. 920648/2006).  相似文献   

9.
The photoreceptors and eyes of four fish species commonly cohabiting Fennoscandian lakes with different light transmission properties were compared: pikeperch Sander lucioperca, pike Esox lucius, perch Perca fluviatilis and roach Rutilus rutilus. Each species was represented by individuals from a clear (greenish) and a humic (dark brown) lake in southern Finland: Lake Vesijärvi (LV; peak transmission around 570 nm) and Lake Tuusulanjärvi (LT; peak transmission around 630 nm). In the autumn, all species had almost purely A2-based visual pigments. Rod absorption spectra peaked at c.526 nm (S. lucioperca), c. 533 nm (E. lucius) and c. 540 nm (P. fluviatilis and R. rutilus), with no differences between the lakes. Esox lucius rods had remarkably long outer segments, 1.5–2.8-fold longer than those of the other species. All species possessed middle-wavelength-sensitive (MWS) and long-wavelength-sensitive (LWS) cone pigments in single, twin or double cones. Rutilus rutilus also had two types of short-wavelength sensitive (SWS) cones: UV-sensitive [SWS1] and blue-sensitive (SWS2) cones, although in the samples from LT no UV cones were found. No other within-species differences in photoreceptor cell complements, absorption spectra or morphologies were found between the lakes. However, E. lucius eyes had a significantly lower focal ratio in LT compared with LV, enhancing sensitivity at the expense of acuity in the dark-brown lake. Comparing species, S. lucioperca was estimated to have the highest visual sensitivity, at least two times higher than similar-sized E. lucius, thanks to the large relative size of the eye (pupil) and the presence of a reflecting tapetum behind the retina. High absolute sensitivity will give a competitive edge also in terms of short reaction times and long visual range.  相似文献   

10.
Summary The photoreceptors of the penguin,Spheniscus humboldti, were examined using a microspectrophotometer. The cones could be divided into three classes based on their visual pigment absorbance spectra [max 403, 450 and 543 nm (Fig. 1)], and into five classes based on their visual pigment-oil droplet combination (Fig. 4). Oil droplets were of three types (Fig. 2). The rods contained a rhodopsin with max at 504 nm. No double cones were observed. The penguin should be capable of good wavelength discrimination in the blue-green region of the spectrum but with poor discrimination at longer wavelengths. It is concluded that the spectral properties of the cone types indicate that the photopic vision ofS. humboldti is adapted to the spectral qualities of its aquatic environment.  相似文献   

11.
Bird colour vision is mediated by single cones, while double cones and rods mediate luminance vision in bright and dim light, respectively. In daylight conditions, birds use colour vision to discriminate large objects such as fruit and plumage patches, and luminance vision to detect fine spatial detail and motion. However, decreasing light intensity favours achromatic mechanisms and eventually, in dim light, luminance vision outperforms colour vision in all visual tasks. We have used behavioural tests in budgerigars (Melopsittacus undulatus) to investigate how single cones, double cones and rods contribute to spectral sensitivity for large (3.4°) static monochromatic stimuli at light intensities ranging from 0.08 to 63.5 cd/m2. We found no influences of rods at any intensity level. Single cones dominate the spectral sensitivity function at intensities above 1.1 cd/m2, as predicted by a receptor noise-limited colour discrimination model. Below 1.1 cd/m2, spectral sensitivity is lower than expected at all wavelengths except 575 nm, which corresponds to double cone function. We suggest that luminance vision mediated by double cones restores visual sensitivity when single cone sensitivity quickly decreases at light intensities close to the absolute threshold of colour vision.  相似文献   

12.
We studied the photopic spectral sensitivity in the green-backed firecrown, Sephanoides sephaniodes, a South American hummingbird, and its possible ecological relationship with preferred flowers and body colouration. Avian colour vision is in general tetrachromatic with at least four types of cones, which vary in sensitivity from the near ultraviolet (UV) to the red wavelength range. Hummingbirds represent an important family of birds, yet little is known about their eye sensitivity, especially about the role of photoreceptors and their oil droplet complements. The photopic electroretinogram shows a main sensitivity peak at 560 nm and a secondary peak in the UV, and may be explained by the presence of four single cones (lambda (max) at ~370, 440, 508 and 560 nm), and a double cone (lambda (max) at 560 nm) screened by oil droplets. The flowers preferred by the firecrown are those in which the red-green wavelength region predominates and have higher contrast than other flowers. The crown plumage of males is highly iridescent in the red wavelength range (peak at 650 nm) and UV; when plotted in a high-dimensional tetrachromatic space, it falls in a "red + UV" purple hue line, suggesting a potential significant communication signal for sexual differentiation.  相似文献   

13.
Scanning electron microscopy, immunocytochemistry, and single cell microspectrophotometry were employed to characterize the photoreceptors and visual pigments in the retina of the garter snake, Thamnophis sirtalis. The photoreceptor population was found to be comprised entirely of cones, of which four distinct types were identified. About 45.5% of the photoreceptors are double cones consisting of a large principal member joined near the outer segment with a much smaller accessory member. About 40% of the photoreceptors are large single cones, and about 14.5% are small single cones forming two subtypes. The outer segments of the large single cones and both the principal and accessory members of the doubles contain the same visual pigment, one with peak absorbance near 554 nm. The small single cones contain either a visual pigment with peak absorbance near 482 nm or one with peak absorbance near 360 nm. Two classes of small single cones could be distinguished also by immunocytochemistry and scanning electron microscopy. The small single cones with the 360-nm pigment provide the garter snake with selective sensitivity to light in the near ultraviolet region of the spectrum. This ultraviolet sensitivity might be important in localization of pheromone trails. Accepted: 10 March 1997  相似文献   

14.
Birds have sophisticated colour vision mediated by four cone types that cover a wide visual spectrum including ultraviolet (UV) wavelengths. Many birds have modest UV sensitivity provided by violet‐sensitive (VS) cones with sensitivity maxima between 400 and 425 nm. However, some birds have evolved higher UV sensitivity and a larger visual spectrum given by UV‐sensitive (UVS) cones maximally sensitive at 360–370 nm. The reasons for VS–UVS transitions and their relationship to visual ecology remain unclear. It has been hypothesized that the evolution of UVS‐cone vision is linked to plumage colours so that visual sensitivity and feather coloration are ‘matched’. This leads to the specific prediction that UVS‐cone vision enhances the discrimination of plumage colours of UVS birds while such an advantage is absent or less pronounced for VS‐bird coloration. We test this hypothesis using knowledge of the complex distribution of UVS cones among birds combined with mathematical modelling of colour discrimination during different viewing conditions. We find no support for the hypothesis, which, combined with previous studies, suggests only a weak relationship between UVS‐cone vision and plumage colour evolution. Instead, we suggest that UVS‐cone vision generally favours colour discrimination, which creates a nonspecific selection pressure for the evolution of UVS cones.  相似文献   

15.
Cone cells constitute only 3% of the photoreceptors of the wild-type (WT) mouse. While mouse rods have been thoroughly investigated with suction pipette recordings of their outer segment membrane currents, to date no recordings from WT cones have been published, likely because of the rarity of cones and the fragility of their outer segments. Recently, we characterized the photoreceptors of Nrl(-/-) mice, using suction pipette recordings from their "inner segments" (perinuclear region), and found them to be cones. Here we report the use of this same method to record for the first time the responses of single cones of WT mice, and of mice lacking the alpha-subunit of the G-protein transducin (G(t)alpha(-/-)), a loss that renders them functionally rodless. Most cones were found to functionally co-express both S- (lambda(max) = 360 nm) and M- (lambda(max) = 508 nm) cone opsins and to be maximally sensitive at 360 nm ("S-cones"); nonetheless, all cones from the dorsal retina were found to be maximally sensitive at 508 nm ("M-cones"). The dim-flash response kinetics and absolute sensitivity of S- and M-cones were very similar and not dependent on which of the coexpressed cone opsins drove transduction; the time to peak of the dim-flash response was approximately 70 ms, and approximately 0.2% of the circulating current was suppressed per photoisomerization. Amplification in WT cones (A approximately 4 s(-2)) was found to be about twofold lower than in rods (A approximately 8 s(-2)). Mouse M-cones maintained their circulating current at very nearly the dark adapted level even when >90% of their M-opsin was bleached. S-cones were less tolerant to bleached S-opsin than M-cones to bleached M-opsin, but still far more tolerant than mouse rods to bleached rhodopsin, which exhibit persistent suppression of nearly 50% of their circulating current following a 20% bleach. Thus, the three types of mouse opsin appear distinctive in the degree to which their bleached, unregenerated opsins generate "dark light."  相似文献   

16.
The outer retina of the smelt Osmerus eperlanus, a visually orientated plankton feeder, of Lake Hiidenvesi (Finland), was examined using both light and transmission electron microscopy. Apart from rods, six morphologically different cone photoreceptor types were identified: short single cones, long single cones, unequal/equal double cones and triple cones (triangular and linear variety). Additionally, in the dorsal region, multiple cone arrangements consisting of up to five members occur. Long single cones and triple cones were observed only sporadically throughout the retina. The incidence of short single cones as a regular element of the cone mosaic is restricted to the ventrotemporal area. The dominant pattern in the Osmerus retina is a pure or a twisted row pattern occurring in all regions. Ventrotemporally, however, square patterns were found as well. The highest cone densities occur in the peripheral ventrotemporal retina. These results indicate that the ventrotemporal region plays an important role in the vision of the smelt. The findings are discussed with respect to the photic habitat conditions and behavioural ecology of the smelt in Lake Hiidenvesi.  相似文献   

17.
Budgerigars, Melopsittacus undulatus, were trained to discriminate monochromatic lights from mixtures of two comparison lights. The addition of small amounts of UV (365 nm) to blue or yellow lights dramatically changed the color for the birds. Hue matches showed the birds to be dichromatic both at long wavelengths (only P565 and P508 active) and at short wavelengths (only P370 and P445 active because of screening of P508 and P565 by cone oil droplets). In mid-spectrum (only P445 and P508 active), a hue match was achieved, but the results were more complicated because two opponent neural processes were activated. All observed hue matches were in quantitative agreement with calculations of relative quantum catch in the pairs of participating single cones and point to the presence of a minimum of three opponent neural processes. For the hue matches at mid- and short wavelengths, the calculations also predict peak values of absorbance of the cone oil droplets associated with P508 and P445. Relative intensity of the training light affected difficult matches at long but not short wavelengths, likely due to achromatic signals from the double cones. With suitable training, birds could make intensity discriminations at short wavelengths, where the double cones have diminished sensitivity.  相似文献   

18.
The outer retinae of adults of 13 atherinomorph species, representing nine different families, were examined by both light and electron microscopy. The retinae were investigated with respect to photoreceptor types, cone densities, and cone patterns. All data were composed to eye maps. This procedure allows an interspecific comparison of the regional differences within the outer retina among these shallow-water fish. Furthermore, for a more detailed pattern analysis nitro-blue tetrazolium chloride- (NBT)-stainings in the retina of Melanotaenia maccullochi are presented. Apart from rods, eight morphologically different cone types could be identified: short, intermediate, and long single cones, double cones (equal and unequal), triple cones (triangular and linear), and in Ameca splendens one quadruple cone. Dimensions and occurrence of photoreceptors vary among the respective species and within the retinal regions. In the light-adapted state, the cones are arranged in highly ordered mosaics. Five different cone tessellation types were found: row patterns, twisted row patterns, square patterns, pentagonal patterns, and, exclusively in Belone belone, a hexagonal pattern. In Melanotaenia maccullochi the different spectral photoreceptor classes correspond well with the distribution of morphological photoreceptor classes within the mosaic. Double cone density maxima together with a highly ordered cone arrangement usually occur in the nasal and/or ventral to ventrotemporal retina. In most of the species that were examined these high-density regions are presumed to process visual stimuli from the assumed main directions of vision, which mainly depend on feeding behavior and predator pressure. Our findings are discussed with respect to the variable behavioral and visual ecology and phylogeny of the respective species.  相似文献   

19.
Scanning electron microscopy, microspectrophotometry, and spectrophotometry of digitonin extracts were employed to characterize the photoreceptors and visual pigments of two freshwater Acipenseriformes. The retinas of the shovelnose sturgeon, Scaphirhynchus platorynchus (Acipenseridae), and the paddlefish, Polyodon spathula (Polyodontidae) are dominated by large rods with long, broad outer segments. A second rod, rare and much narrower than the dominant rod, is present in Scaphirhynchus but not seen in Polyodon. The absorbance maximum of the visual pigment in the rods of Polyodon is near 540 nm; that of Scaphirhynchus near 534 nm. The retinas of both species contain substantial numbers of large, single cones, about 33% of the photoreceptors in Scaphirhynchus; 37% in Polyodon. Scaphirhynchus cone pigments have absorbance maxima near 610 nm, 521 nm and 470 nm, respectively. Polyodon cone pigments absorb maximally near 607 nm and 535 nm, respectively. All visual pigments are based on vitamin A2. The data are compared to those from other Acipenseriformes and are discussed in terms of lifestyle and behavior. Accepted: 7 October 1998  相似文献   

20.
The goatfish Upeneus tragula undergoes an abrupt metamorphosis at settlement when the pelagic larvae begin a reef-associated benthic mode of life. A microspectrophotometric investigation of the retinal visual pigments was carried out on fish prior to, during, and following settlement. It was found that the visual pigment in the long wavelength-absorbing member of the double cones in the dorsal retina changed rapidly from a rhodopsin with a wavelength of maximum absorption (max) of 580 nm to that of 530 nm. The second member of the double cones always had a rhodopsin with the max absorbing at shorter wavelengths. Prior to settlement the average for this class of cones was 487 nm whereas during and immediately following the settlement period the max recorded from individual outer segments was found to vary between 480 nm and 520 nm, with two possible classes of cone absorbance emerging within this range. These two classes of absorbance had average max values of 487 and 515 nm. The average max of the paired cone classes in one larger wild-settled fish were found to be at 506 nm and 530 nm. No change was detected in the max of the single cones or the rods which were always found to have a max of about 400 nm and 498 nm respectively. The loss of the redabsorbing pigment occurred over the same time scale as the metamorphosis of morphological features associated with the settlement process. It is thought that the loss of this visual pigment is associated with the change in light environment of the fishes as they leave the surface waters to begin a benthic mode of life in deeper water.Abbreviations AIMS Australian Institute of Marine Science - ANOVA Analysis of variance - IR infra-red - max wavelength of maximum absorption - MSP microspectrophotometer - NA numerical aperture - SL standard length  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号