首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以LaNi3.7Al0.75Mn0.55(La-Ni-Al-Mn)储氢合金为基体,采用低成本的气相二氧化硅溶胶包覆法对储氢合金进行抗毒化改性研究。制备的La-Ni-Al-Mn/SiO2复合材料表现出良好的抗毒化性能和循环稳定性,经50次循环后,合金吸氢速率保持不变,吸氢容量达1.060%。复合材料抗毒化机理为:非晶态SiO2包覆层在热处理过程中形成原子短程有序排布的渗氢点,有效阻挡O2、N2等大分子气体的透过。通过对复合材料热处理工艺的优化,最终获得其最佳的热处理工艺为200 ℃下热处理2 h。  相似文献   

2.
为提高高压储氢容器的体积储氢密度,采用具有高体积储氢密度的储氢合金与轻质高压容器复合组成高压金属氢化物复合式储氢器.为获得高压氢源,研究了Mm-Ml-Ni-Al(Mm为富铈混合稀土,Ml为富镧混合稀土)的储氢特性,并试制了化学热压缩器.采用研制的高压氢源,对具有高吸放氢平台压力的Ce-Ni系合金的高压储氢特性进行了研究.实验结果表明:以Ml或Ca部分取代Mm以及Al对Ni的部分置换后合金活化性能和吸放氢压力滞后明显改善,(Mm-Ml)0.8Ca0.2(Ni-Al)多元合金具有较好的储氢性能,适合于作为化学热压缩合金.CeNi5基多元合金在40MPa氢压条件下,合金具有较好的活化性能和吸放氢动力学性能,合金最大储氢容量分别达到1.6wt%.将优化的储氢合金与自制的轻质高压储氢容器复合组成的金属氢化物复合式高压储氢器,当储氢合金的填充量达到0.2(体积分数)时,其体积储氢密度提高50%.  相似文献   

3.
综述固态储氢技术的研究进展,包括储氢材料、储氢装置及其应用现状。部分储氢合金已成功用于固态储氢装置中,开发温和吸放氢条件下新型高容量可逆储氢材料是当前研发重点;储氢装置的优化设计可有效改善装置的快速传热特性,安全性能也得以保证,储氢装置已在分布式供能、机动车等领域得到示范应用,但还需进一步实现储氢系统快速响应、安全可靠和高储氢密度的协调统一。  相似文献   

4.
纳米TiO2对Mg-15%Mg2Ni复相合金吸放氢性能的影响   总被引:3,自引:0,他引:3  
用扩散烧结制备Mg2Ni合金,然后与Mg粉和不同比例(质量百分比分别为0.5%,1.5%,2.5%)的纳米TiO2混和球磨得到纳米Mg—Mg2Ni—TiO2复合储氢材料。对复相合金进行储氢性能研究时发脱,其中添加0.5%TiO2的试样可以在393K,4MPa的条件下4min内吸氢,并能在503K,0.1MPa条件下15min内放氢,放氢量为4.1%;随着温度升高,复合储氢材料放氢量和放氢速度得到提高,在473K吸氢和503K放氢条件下,合金在15min内的放氢量达到5.6%。纳米TiO2对合金吸放氢动力学性能有促进作用。复合储氢材料中增加TiO2含量,加快了放氢速度,略微降低了放氢量。  相似文献   

5.
基于金属氢化物吸氢基本特性,建立圆柱形金属氢化物储氢器吸氢过程的-维数学物理模型.采用有限差分法对金属氢化物床体的传热传质进行计算.分别研究金属氢化物床体各处温度和氢含量在吸氢过程中的变化以及氢气压力、对流传热系数和金属氢化物床体径向厚度对金属氢化物吸氢过程的影响.计算结果表明:初始阶段金属氢化物床均匀吸氢,但随着氢化过程的进行,其中心区域的吸氢速率逐渐低于边缘区域;增加吸氢压力、提高对流传热系数均可促进储氢器的吸氢;金属氢化物床的径向厚度对吸氢速率影响很大,金属氢化物床越薄,氢化反应的速度越快.  相似文献   

6.
为了研究不同运行工况条件下的换热特性,利用分段集总参数法搭建流化床固体颗粒/sCO2换热器的仿真数学模型,并对换热系统在不同输入变量扰动下的动态特性及对关键参数的敏感性进行分析和研究。结果表明:换热系统输入侧入口温度的扰动对换热器输出温度的影响幅度较大,而输入侧质量流量的扰动对输出温度的影响较小;小管径和低管数有利于获得较高的sCO2侧换热系数;同时,在符合最小流化条件下,小粒径和较低的流化气体速度有利于颗粒侧传热系数的提高。  相似文献   

7.
氢能有望成为脱碳时代的“理想燃料”。高性能储氢材料的发现、开发和改性是未来发展固态储氢和氢能源利用的关键。而氢化镁(MgH2)具有储氢能力强、自然储量丰富、环境友好等特点,在固态储氢材料领域备受关注。但是氢化镁较高的热力学稳定性、缓慢的动力学性能,以及循环过程中不可避免的团聚和粗化等问题在一定程度上限制了镁基固态储氢材料的大规模投产和实际应用。近年来,大量研究工作聚焦于镁基储氢材料的热/动力学改性,目前已经取得了大量的成果。本文通过回顾国内外相关文献,综述了改善镁基固态储氢材料储氢性能的最新研究进展,着重介绍了合金化、纳米化、引入催化剂等改性策略,阐述了不同策略具体的改性机理。最后对未来的发展方向进行了展望,旨在为高性能镁基储氢材料的研发提供借鉴与指导。  相似文献   

8.
通过实验研究了利用燃料电池产生的废热以强制对流传热的方式给金属氢化物储氢器加热的可行性与具体的设计方案,与目前已报道的国内外便携式PEMFC系统相比,该方案无任何附属设备,使系统保持较高的整体效率,提高了金属氢化物储氢器的放氢性能.通过正交实验和实验数据的方差分析得知该方案在保证金属氢化物储氢器持续放氢的同时,对PEMFC无明显负面影响.  相似文献   

9.
以LiAlH4和LiBH4为原料,采用球磨方法制备了Li-Al-B-H复合储氢体系,通过XRD、TG、DSC和SEM等研究手段对复合物的微观结构和性能进行表征.研究结果表明:LiAlH4/2LiBH4复合物加热至500℃时的放氢量达到9.7wt%,在450C和8Mpa H2条件下的最大吸氢量达到6.8wt%.还计算了(LiAlH4/2LiBH4)复合物放氢反应的表观活化能,并对( LiAlH4/2LiBH4)复合物吸放氢反应的机理进行了讨论.  相似文献   

10.
为了解贫预混燃烧室天然气掺氢加湿燃烧时的性能变化和容许加湿范围,解决氢混燃气轮机NOx排放超标问题,以某燃气轮机燃烧室为研究对象,数值研究了掺氢比和加湿比对燃烧性能及污染物排放特性的影响。结果表明:燃料无加湿条件下,燃烧室出口CO和CO2排放值随着掺氢比的增加而减小,较高燃烧温度将导致热力型NOx排放值增加,掺氢比达到0.2以上时,NOx排放已超出环保限值;燃料加湿条件下,随着加湿程度增加,燃气出口平均流速及水蒸气组分含量均增加,燃烧筒内全局温度、CO2和NOx排放值均降低,CO排放值先降低后增加;掺氢天然气加湿可实现低氮燃烧,考虑到低掺氢工况燃气轮机功率输出效能和高掺氢工况燃烧性能恶化问题,水蒸气加湿量不宜过多,当掺氢比为0.3时,推荐燃料加湿比为0.463。  相似文献   

11.
采用感应熔炼和球磨方法制备镧镍储氢合金,进一步通过酸处理法原位制备富镍镧镍储氢合金。研究不同条件下制备的镧镍储氢合金催化二苄基甲苯(DBT)加氢性能。在反应温度为280 ℃时,经过4 h后,富镍镧镍储氢合金催化二苄基甲苯的加氢量达到5.34%(质量分数),20 h后,其加氢量达到理论最大值。富镍镧镍储氢合金具备的高效催化二苄基甲苯加氢活性主要归因于镍的高效催化和镧镍储氢合金可逆吸放氢之间的相互促进作用。  相似文献   

12.
  [目的]  燃气轮机排气温度高,可增加底循环,利用排气的余热发电,从而提高燃料总的能量利用率。鉴于超临界CO2循环热效率高,并且具有系统简单、结构紧凑、运行灵活等潜在优势,可与燃气轮机组成新型的燃气-超临界CO2联合循环。  [方法]  为了充分利用燃气轮机排气余热,提出在简单回热超临界CO2循环的基础上,再嵌套一个简单回热循环的布置方式,并以PG9351(FA)型燃气轮机为例,对其热效率进行了计算分析。同时,在系统中增加余热利用装置,可将剩余热量用于供热、转换为冷量或发电。  [结果]  结果表明:对于选定的燃气轮机,超临界CO2循环最高温度可达约600 ℃,循环发电效率约32%,获得余热温度为170 ℃以上,余热热量占燃气轮机排气热量9%,联合循环发电效率约54%。  [结论]  燃气-超临界CO2联合循环发电系统具有较高的热效率,并且保留部分较高品位的余热,可进一步用于电厂运行。  相似文献   

13.
为了解决船舶、飞行器等动力装置的持续供电问题,选定超临界二氧化碳(SCO2)布雷顿循环作为动力来源。用Aspen plus软件对简单型、回热型和再压缩型SCO2布雷顿循环进行分析,根据设计工况下循环的热效率和功率以及循环系统的重量,最终选择回热型SCO2布雷顿循环作为动力装置的供电循环。对回热循环进行分析,分析结果表明:在回热循环中随着压气机、涡轮效率增大,循环的热效率和循环功率也增大。压气机出口压力对循环热效率的影响可以近似为线性,涡轮入口温度对循环热效率几乎没有影响。换热器温度对效率的影响大于压力对效率的影响并且换热器对循环功率几乎没有影响。在确定回热循环压气机工况参数后,利用Concepts NREC COMPAL软件和CFX软件分别对回热循环的压气机进行了一维设计和三维计算,设计出了等熵效率能够达到90.53%的单级离心压气机。  相似文献   

14.
采用反应分子动力学(ReaxFF MD)模拟方法研究了O2/CO2/H2O气氛下CO的燃烧。结果表明:根据化学平衡原理,高浓度CO2抑制CO的氧化,同时CO2在高温下参与反应CO2+H—→CO+OH,进一步抑制CO氧化。在较低温度条件下,较高浓度H2O的三体效应显著,抑制了CO氧化。另一方面,在较高温度条件下,H2O参与的H2O+H—→H2+OH和H2O+O—→OH+OH反应占据其化学作用的主导地位,进而促进CO氧化。随着O2浓度的增加,CO的氧化速度加快。  相似文献   

15.
大容量高压车载储氢气瓶充氢过程的热力学响应特性是氢燃料电池汽车氢气安全充注亟需解决的关键问题。采用CFD模型,对70 MPa Ⅲ型车载储氢气瓶在不同长径比、充氢速率、气瓶初始压力、气源温度条件下充氢过程的热力学响应特性进行模拟。结果表明,在高压下氢气不可视为理想气体;重力对充氢过程的影响不能忽略;容积100 L储氢气瓶的最佳长径比为3.55;气源温度对充氢过程的影响最为显著,其次是气瓶初始压力与充氢速率,与热力学分析获得的结论类似。  相似文献   

16.
为了探究镁基固态储氢反应器储氢反应速度的影响因素,建立了反应器三维数学模型.通过与文献中实验数据的对比验证了所建立模型的有效性.采用数值方法研究了导热油入口温度、供氢压力和环形导热油的油层厚度对储氢反应速度的影响.模拟结果表明,镁基固态储氢反应器存在最佳反应温度,过高或者过低的导热油入口温度都会降低储氢反应速度.导热油...  相似文献   

17.
氢水合固态储存技术探讨   总被引:1,自引:0,他引:1  
高效储氢是氢能利用技术中须要研究解决的关键问题之一.储氢材料是储存和运输氢能的载体,通过可逆地吸放氢气,实现氢能的储存和释放.文章探讨了水合物作为储存和运输氢能的载体的可行性,分析了氢水合固态储存的主要影响因素.  相似文献   

18.
为提高闭式单井系统取热性能,提出一种CO2单井增强地热系统(CO2-SEGS)。建立井筒流动换热和储层热-流-固耦合的数学模型,考虑CO2可压缩性以及井纵向压力传递特性,对比分析了水和CO2在SEGS中的取热性能,研究系统取热性能与封隔间距、井筒保温的关系。结果表明:(1)额定循环流量下,井口生产温度从134.09℃降低至116.06℃;CO2在采出过程中降压膨胀做功,产生明显的温降效应,中心管井口温度比底部低约57℃。(2)井筒不同位置处CO2的密度、热容差异很大,当循环流量小于50 kg/s时,依靠浮升力作用,SEGS可实现自主循环运行,无需额外泵功。(3)当水和CO2的流量分别为15 kg/s和40 kg/s时,两者年均取热速率近似相等,CO2的采出温度比水低约40℃,而压力损耗远小于水。(4)SEGS取热性能与封隔间距以及中心管保温性能呈正相关。研究结果可为SEGS系统的开发提供参考。  相似文献   

19.
针对300MW超临界二氧化碳(SCO2)部分冷却循环和部分冷却再热循环燃煤发电系统,建立了热经济性数学模型,以循环热效率ηt、系统■效率ηex及平准化度电成本CLCOE为评价指标,对不同系统和不同关键参数进行热经济性对比分析。结果表明:在设计工况下,与部分冷却循环系统相比,在部分冷却再热循环下ηt高0.33%,ηex高0.35%;在相同参数条件下,2个发电机组燃煤消耗成本占比均超过70%,锅炉成本远高于其他设备成本;存在最优的主压缩机入口压力,使得ηt、ηex达到最大,同时CLCOE达到最小;随着主压缩机入口温度的增大,ηt、ηex逐渐减小,CLCOE则逐渐增大;ηt、ηex随着透平入口温度的增大线性提升,CLCOE则先减小后增大。  相似文献   

20.
覃峰  陈江平  陈芝久 《太阳能学报》2006,27(12):1257-1262
制备了设计工作温度为150-200℃/20-50℃/0℃的金属氢化物合金工质对LaNi4.61Mn0.26Al0.13/La0.6Y0.4Ni4.8Mn0.2,测定了合金对在各温度下的吸氢性能,作出了Van’t-Hoff图,并推导了合金反应焓、反应熵和理论循环特性;设计了反应床,实测高温反应床的导热系数;搭建了间歇制冷的热驱动金属氢化物循环系统,在150℃/30℃/0℃工况下测定了系统的循环特性和制冷性能。实验结果表明,合金工质的平台斜率和滞后系数小、吸氢动力性能较好,低温合金的吸氢反应焓值达-27.1kJ/molH2;设计反应床的导热系数约为1.3W/(m.K),较合金粉末的导热系数有了很大提高,但仍未达到实用要求;制冷系统在设定工况下完成了循环,获得了84.6W的平均制冷功率、COP达0.26,从而验证了金属氢化物制冷系统的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号