首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
为了更好的理解热障涂层的失效机理,文中运用ABAQUS有限元软件来分析热障涂层的失效情况,使用内聚力单元和扩展有限元(XFEM)两种方法研究热障涂层TGO界面开裂与陶瓷涂层(TC)和氧化层(TGO)内随机裂纹的萌生与扩展,研究竖直裂纹与水平裂纹的关系.结果表明,热障涂层TGO界面的开裂首先出现在TGO/TBC波谷处.陶瓷涂层和氧化层内随机裂纹的萌生同样发生在TGO/TBC波谷处.竖直裂纹的存在可以抑制水平裂纹的萌生与扩展,且其在TGO/TBC波谷处的扩展长度比在TGO/TBC波峰处的扩展长度更长,说明TGO/TBC波谷区域是个危险区域,在此区域容易引发裂纹的萌生与扩展.  相似文献   

2.
为研究焊接结构裂纹的萌生扩展,利用ABAQUS软件建立4种不同焊趾倒角的焊接十字接头模型,采用扩展有限元单元法(XFEM),在不预置裂纹的情况下,网格类型分别设置为平面应力状态和平面应变状态,进行裂纹萌生扩展模拟。结果表明:在平面应变状态下,裂纹更容易萌生扩展,焊趾倒角对裂纹的萌生位置和扩展路径存在影响。  相似文献   

3.
基于Tanaka-Mura位错模型的疲劳裂纹萌生寿命预测   总被引:1,自引:1,他引:0  
为了准确预测材料的疲劳寿命,提高结构疲劳寿命预测精度,对ABAQUS有限元数值模拟预测试样疲劳寿命的方法进行了研究. 基于Tanaka-Mura位错理论,利用python语言对ABAQUS进行二次开发,模拟预测了S960QL马氏体钢和Ti2AlNb钛合金接头各区域疲劳裂纹萌生寿命. 利用泰森多边形法生成了晶体特征单元建立了微观子模型,考虑了体心立方结构相互垂直的两条滑移带作为潜在的裂纹萌生位置,并对具有相同取向的多条平行滑移带都进行了模拟计算. 通过计算得到的裂纹扩展速率变化,给出了裂纹萌生阶段过渡到裂纹扩展阶段的临界点处的裂纹萌生寿命. 模拟结果表明,除焊缝柱状晶组织外裂纹萌生寿命与试验数据吻合良好.  相似文献   

4.
提出一种微观尺度的有限元模型,模拟了焊接接头的变形和短裂纹的萌生寿命。该模型考虑了焊接接头晶粒取向的不同和焊缝不同区域力学性能的差异。塑性应变能被作为疲劳损伤参量,结合疲劳寿命的能量准则来预测疲劳裂纹的萌生寿命。通过分析钛合金电子束焊的实验数据对该模型进行了验证。结果表明,在恒幅载荷作用下,焊接接头裂纹萌生于焊缝区多个晶界交汇或者较大且轮廓有畸变的晶粒内;微裂纹主要以Ⅰ型裂纹扩展;该微观有限元模型结合疲劳寿命预测的能量法在微观尺度上能够较好地完成焊缝疲劳性能的表征和疲劳寿命的估算。  相似文献   

5.
P92钢焊接接头蠕变损伤与裂纹扩展数值模拟   总被引:3,自引:3,他引:0       下载免费PDF全文
高温焊接接头由于蠕变损伤而提前失效的案例频频发生,准确预测焊接接头的蠕变损伤和裂纹扩展行为对于保证高温装备的结构完整性具有重要意义.文中基于延性耗竭模型并结合有限元方法,考察了结构因素对厚壁圆管焊接接头蠕变失效行为的影响.结果表明,蠕变裂纹萌生/扩展行为受热影响区宽度影响,细晶热影响区宽度对蠕变裂纹的萌生时间影响不大,但会改变裂纹萌生位置;相比之下,粗晶热影响区的宽度变化对裂纹萌生时间影响略大.不同坡口形式展现出不同的裂纹萌生/扩展行为,而X形坡口是四种坡口形式中的较优选择.  相似文献   

6.
利用SEM原位观察技术研究了近片层Ti-45Al-8Nb-0.2W-0.2B-0.1Y合金在750℃疲劳蠕变交互作用下的裂纹萌生及扩展行为,循环实验采用在最大拉应力保载的梯形波.结果表明,裂纹主要在片层团界面萌生,裂纹萌生方式包括蠕变空洞和疲劳微裂纹.片层团界面处的微裂纹先通过吞并蠕变空洞或在裂纹尖端应力集中作用下沿片层团界面进行扩展,然后相互连接长大;当裂纹扩展受到不同取向的片层团界面阻碍时,受阻的裂纹开始沿试样厚度方向扩展,且附近伴随出现垂直于载荷方向的微裂纹;最终受阻的裂纹相互连接直至合金断裂.将实验结果与该合金在相同条件下疲劳变形和蠕变变形的原位观察结果进行了比较.结合实验结果建立了高铌TiAl合金在疲劳蠕变交互作用下裂纹萌生及扩展示意模型.  相似文献   

7.
使用内聚力模型及有限元分析方法,在含实际形貌SiCp颗粒增强AZ91D镁基复合材料有限元模型中引入孔隙缺陷。分析不同孔隙率对SiCp/AZ91D复合材料在单轴压缩情况下的裂纹萌生及扩展的影响。结果表明:无孔隙的SiCp/AZ91D复合材料裂纹萌生在颗粒尖角与基体交界处,含孔隙的复合材料在基体孔隙以及颗粒尖角与基体交界处均会萌生裂纹,复合材料的孔隙率越高,其抗压强度和屈服强度越低,断裂裂纹长度越长,孔隙率的增加使得复合材料的裂纹萌生和断裂的时间提前,加速了复合材料裂纹萌生扩展直至断裂。  相似文献   

8.
TC21钛合金板孔冷挤压残余应力与疲劳性能研究   总被引:2,自引:0,他引:2       下载免费PDF全文
针对飞机后机身框TC21损伤容限钛合金带孔零件在服役过程中易过早产生疲劳裂纹的问题,采用开缝衬套冷挤压强化工艺进行了不同挤压量下的孔强化实验,并对挤压强化后的试样进行疲劳试验研究,得到了挤压量对TC21钛合金疲劳增益的影响规律。通过有限元仿真的方法研究了挤后孔边残余应力分布规律,从宏观和微观两方面观察和分析了不同挤压量下的疲劳断口形貌,探讨了冷挤压对孔边疲劳裂纹的萌生和扩展的影响,揭示了疲劳增益机理。研究结果表明,冷挤压强化后的孔边存在明显的切向压缩残余应力,改变了孔边裂纹萌生位置,延长了交变载荷作用下的疲劳裂纹扩展寿命,疲劳寿命随着挤压量的增大而明显提高,挤后试样疲劳寿命均提高50%以上。  相似文献   

9.
《铸造》2019,(9)
为观测铸件裂纹萌生及扩展的过程,以常见的轧辊铸件为研究目标,并结合凝固过程的热应力场,采用综合考虑铸件高温阶段等效应变与应力状态的热裂判据以确定裂纹萌生的位置。在依据热裂判据确定的起裂位置插入初始预制裂纹后,采用子模型技术以及扩展有限元算法对后续热裂纹的扩展过程进行数值模拟,分析热裂纹的扩展趋势。通过与实际观测到的热裂纹形貌进行对比,验证了此方法的可行性。  相似文献   

10.
冶金型气孔对熔化焊接7020铝合金疲劳行为的影响   总被引:2,自引:0,他引:2  
基于同步辐射X射线三维高精度原位成像技术,识别和统计出工艺稳定的激光复合焊接7020铝合金接头中的气孔数量、形貌、尺寸和空间分布特征,结合气孔统计数据结果和焊缝晶粒大小,定义了7020铝合金激光复合焊接头中影响接头疲劳性能的气孔临界尺寸。利用同步辐射X射线三维原位疲劳实验数据和疲劳断口形貌,探讨了疲劳试样裂纹源处气孔尺寸、应力和疲劳寿命之间的定量关系。同时,基于有限元仿真分析,研究了不同位置下气孔处的应力场状态。最后,通过疲劳裂纹扩展速率实验,揭示了气孔对疲劳裂纹萌生、扩展和试样瞬断的影响。研究结果表明,激光复合焊接头临界气孔尺寸可定为30 mm;同步辐射X射线成像和疲劳断口显示,较大的表面气孔和近表面的气孔较容易萌生疲劳裂纹。仿真研究也表明,气孔周围的应力集中程度随着气孔位置由表面向内部移动呈现出先增大后减小最后趋于稳定的趋势;疲劳裂纹扩展速率数据分布趋势表明,气孔对长裂纹扩展过程的影响较小,可忽略不计,但一般认为对裂纹前缘形貌有较大影响。  相似文献   

11.
采用超声疲劳试验方法对铝合金5052-H32焊接接头进行疲劳试验,研究其在超长寿命区间(107~109周次)的疲劳强度及失效机理.结果表明,相同疲劳寿命下焊接接头疲劳强度较母材下降了73.3%,在超高周疲劳区间仍然会发生疲劳破坏;断口观察发现焊接缺陷(气孔)是诱发疲劳裂纹萌生的主要原因.为揭示焊接缺陷对焊接接头疲劳裂纹萌生及扩展的影响,采用有限元技术分析了气孔对应力集中系数和裂纹尖端应力强度因子的影响.最后讨论了焊接缺陷对疲劳寿命的影响机制及裂纹扩展特性.  相似文献   

12.
王习术  梁锋  曾燕屏  谢锡善 《金属学报》2005,41(12):1272-1276
采用扫描电镜原位观测了数微米大小夹杂物对超高强度钢疲劳裂纹萌生及扩展的影响,并用有限元法解释了夹杂物尺寸和形状对疲劳裂纹萌生及初期扩展的影响程度,得到了超高强度钢低周疲劳裂纹萌生与扩展特性和夹杂物对疲劳破坏的关键尺寸的估计值.同时,讨论了现行实验方法对确定铁基材料裂纹扩展速率的作用.  相似文献   

13.
首先利用材料试验机测定X80管线用钢的材料参数,得到了X80管线钢的应力-应变曲线;利用ABAQUS软件构建了用于研究X80压力管道裂纹扩展的有限元仿真模型,并通过将模型的仿真结果和理论计算值进行比较,验证了有限元模型的可靠性;然后用有限元仿真模型对X80管道表面裂纹的应力强度因子和J积分进行了计算和分析;后又验证了扩展有限元法的合理性,对裂纹扩展过程进行了仿真;最后对应力强度因子和J积分的计算结果进行了分析和比较,总结了X80应力管道裂纹扩展的一般规律,得出了裂纹角度大于14.5°时较短裂纹的强度因子更低,内表面裂纹比外表面裂纹更加危险。研究结果为X80压力管道的安全评估提供了相应的参考。  相似文献   

14.
不锈钢EGR冷却器钎焊结构断裂分析   总被引:2,自引:0,他引:2  
通过对钎焊失效件进行断裂裂纹的宏观分析及断口分析,确定了断裂发生的位置,并分析了断裂形式及疲劳裂纹萌生和扩展过程的特点.在对失效件裂纹的宏观观察中发现,断裂多发生在钎焊圆角根部,裂纹沿钎焊圆角根部萌生和扩展.对钎焊圆角表面微观形貌进行观察后发现,在钎焊圆角根部存在着连续分布的钎料瘤,容易引起局部应力集中,促进疲劳裂纹的萌生.在对失效件断口进行的分析中找到了疲劳断裂的典型特征--疲劳辉纹,有力地证明了失效模式为疲劳断裂.  相似文献   

15.
热变形量对低合金耐磨铸铁冲击疲劳抗力的影响   总被引:1,自引:0,他引:1  
采用金相显微镜、扫描电镜和冲击疲劳试验机研究低合金耐磨铸铁冲击疲劳性能,并分析了热变形对其冲击疲劳性能的影响.结果表明,冲击疲劳裂纹在碳化物内部及碳化物与基体的界面上萌生,优先沿碳化物与基体的界面处扩展;热变形能抑制热疲劳裂纹的萌生与扩展,当变形量为40%时,其冲击疲劳性能较高.  相似文献   

16.
DZ125高温合金超高周疲劳裂纹萌生与扩展   总被引:1,自引:0,他引:1       下载免费PDF全文
裂纹的萌生与扩展是研究合金材料超高周疲劳行为的重要方面。本研究分析与探讨了温度和表面状态对DZ125合金的超高周疲劳裂纹萌生与扩展特征的影响。不同温度下,DZ125合金的超高周疲劳裂纹萌生位置和扩展方式不同。室温下,裂纹均沿表面起源,裂纹扩展以拉伸模式为主;700℃下,裂纹均沿亚表面起源,裂纹扩展以剪切模式为主。室温下,DZ125合金经激光冲击处理前后的超高周疲劳裂纹萌生位置和扩展方式均存在差异。经过激光冲击处理后,裂纹萌生于合金的内部孔洞缺陷,裂纹扩展完全以剪切模式进行。  相似文献   

17.
840D车轮辐板孔疲劳失效及裂纹容限研究   总被引:3,自引:3,他引:3  
通过裂纹和断口的观察、理化检验、模拟仿真及其力学计算,分析了840D车轮辐板孔裂纹的特征、机理和原因.结果表明:裂纹属于高低周复合机械疲劳,裂纹主要在制动加机械载荷工况下萌生和扩展.统计分析确定了裂纹扩展速率,结合裂纹发展形态和理论计算给出了临界裂纹长度,进而评估出裂纹容限为20mm.  相似文献   

18.
基于航空发动机涡轮盘榫槽结构特点及其工作状态,采用榫槽模拟件对GH4720合金的疲劳失效机理和裂纹扩展寿命进行了实验研究和理论分析。研究结果表明:GH4720合金榫槽模拟件的疲劳失效表现为3个阶段:(i)模拟涡轮盘榫槽处由于较高的应力集中而产生滑移,进而萌生裂纹;(ii)随着应力集中和循环载荷的持续,相邻晶粒间位错开动、发生滑移,裂纹在晶粒间传递;(iii)随着应力强度因子范围增大,剪应力和主应力交互作用、滑移系开动及位错在不同滑移系间的运动,裂纹快速扩展。在实验基础上建立了GH4720合金的疲劳裂纹扩展寿命模型,基于有限元分析的榫槽处的应力和裂纹扩展寿命模型得到的裂纹扩展寿命与实验结果相符,表明该裂纹扩展寿命模型可用于工程中预测涡轮盘的剩余寿命。  相似文献   

19.
基于航空发动机涡轮盘榫槽结构特点及其工作状态,采用榫槽模拟件对GH4720合金的疲劳失效机理和裂纹扩展寿命进行了实验研究和理论分析。研究结果表明:GH4720合金榫槽模拟件的疲劳失效表现为3个阶段:(i)模拟涡轮盘榫槽处由于较高的应力集中而产生滑移,进而萌生裂纹;(ii)随着应力集中和循环载荷的持续,相邻晶粒间位错开动、发生滑移,裂纹在晶粒间传递;(iii)随着应力强度因子范围增大,剪应力和主应力交互作用、滑移系开动及位错在不同滑移系间的运动,裂纹快速扩展。在实验基础上建立了GH4720合金的疲劳裂纹扩展寿命模型,基于有限元分析的榫槽处的应力和裂纹扩展寿命模型得到的裂纹扩展寿命与实验结果相符,表明该裂纹扩展寿命模型可用于工程中预测涡轮盘的剩余寿命。  相似文献   

20.
采用单纤维十字架结构试样测试分析了SiC纤维增强TC17复合材料横向力学性能,利用SEM对拉伸断口及横切面进行了显微观察,分析了界面失效位置,并结合有限元数值模拟计算,研究了界面损伤失效机制及裂纹扩展规律。结果表明,在横向载荷的作用下,单纤维试样应力-应变曲线的非线性拐点应力为(271±12) MPa,该点是界面完全失效的起始点。基于双线性内聚力模型的有限元分析结果与实验结果一致,表明复合材料界面失效模式为剪切失效,裂纹萌生于反应层和碳涂层的界面。有限元分析预测的裂纹萌生位置在与加载方向成40°~50°的圆周之间,实验中不同最大载荷下裂纹出现在与拉伸方向成24°~68°之间不同位置,预测宽度略小于实验结果,这种差异的主要原因是有限元模拟中界面设定为理想刚性界面且沿周向一致,而实际碳涂层和反应层的界面是非光滑的,沿圆周存在微缺陷。裂纹萌生后,在剪切应力作用下沿轴向和周向同时扩展,在沿周向扩展过程中,0°附近界面在径向拉伸应力作用下先于90°附近界面失效,随后90°附近界面在周向剪切应力作用下失效。界面完全失效后,应力重新分配,随载荷增加,界面张开程度加大,基体局部出现屈服,直至材料完全断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号