首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrio parahaemolyticus ATCC 43996 was grown at 15°C for 53 h, 20°C for 24 h, 25°C for 12 h, 30°C for 9 h, 35°C for 9 h, or 40°C for 6 h to early stationary phase. Oyster meats were blended, autoclaved at 121°C for 15 min, inoculated with V. parahaemolyticus, and pressure treated at 250 MPa for 2 and 3 min and at 300 MPa for 1 and 2 min at 21°C. Overall, growth temperatures of 20 and 40°C yielded the greatest pressure resistance in V. parahaemolyticus. The effects of salt concentration and H(2)O(2)-degrading compounds on the recovery of V. parahaemolyticus also were investigated. Sterile oyster meats were inoculated with V. parahaemolyticus and treated at 250 MPa for 1, 2, or 3 min at 21°C. These meats were then blended with 0.1% peptone water supplemented with 0.5 to 1.5% NaCl and plated on tryptic soy agar (TSA) supplemented with 0 to 3.5% NaCl. For recovery of pressure-injured cells, peptone water with 1% NaCl and TSA with 0.5% NaCl were the best diluent and plating medium, respectively. Addition of sodium pyruvate (0.05 to 0.2%) or catalase (8 to 32 U/ml) did not increase the recovery of V. parahaemolyticus after pressure treatment. The effect of incubation temperature and gas atmosphere on the recovery of V. parahaemolyticus after pressure treatment also was determined. Aerobic incubation at 30°C resulted in the highest recovery of V. parahaemolyticus in sterile oyster meats. The 30°C incubation temperature was also the optimum temperature for recovery of V. parahaemolyticus in pressure-treated live oysters. The results of this study indicate that the growth conditions for V. parahaemolyticus before and after high hydrostatic pressure treatment should be taken into consideration when assessing the efficacy of pressure inactivation.  相似文献   

2.
This study evaluated the high pressure inactivation of Campylobacter jejuni, Escherichia coli, and poultry meat spoilage organisms. All treatments were performed in aseptically prepared minced poultry meat. Treatment of 19 strains of C. jejuni at 300 MPa and 30°C revealed a large variation of pressure resistance. The recovery of pressure-induced sublethally injured C. jejuni depended on the availability of iron. The addition of iron content to enumeration media was required for resuscitation of sublethally injured cells. Survival of C. jejuni during storage of refrigerated poultry meat was analyzed in fresh and pressuretreated poultry meat, and in the presence or absence of spoilage microbiota. The presence of spoilage microbiota did not significantly influence the survival of C. jejuni. Pressure treatment at 400 MPa and 40°C reduced cell counts of Brochothrix thermosphacta, Carnobacterium divergens, C. jejuni, and Pseudomonas fluorescens to levels below the detection limit. Cell counts of E. coli AW1.7, however, were reduced by only 3.5 log (CFU/g) and remained stable during subsequent refrigerated storage. The resistance to treatment at 600 MPa and 40°C of E. coli AW1.7 was compared with Salmonella enterica, Shiga toxin-producing E. coli and nonpathogenic E. coli strains, and Staphylococcus spp. Cell counts of all organisms except E. coli AW 1.7 were reduced by more than 6 log CFU/g. Cell counts of E. coli AW1.7 were reduced by 4.5 log CFU/g only. Moreover, the ability of E. coli AW1.7 to resist pressure was comparable to the pressure-resistant mutant E. coli LMM1030. Our results indicate that preservation of fresh meat requires a combination of high pressure with high temperature (40 to 60°C) or other antimicrobial hurdles.  相似文献   

3.
This study investigated the effect of early post-mortem temperature on broiler protein characteristics and meat quality. Muscles were kept at different temperatures (0, 20 and 40 °C) until 4h post-mortem and then stored at 4 °C. Rapid degradation of ATP and glycogen, thus inducing a high rate of lactate formation and pH drop, were found in the 40 °C group during incubation. When extracting proteins, a lower protein content of the sarcoplasmic fraction and a higher protein content of the myofibrillar fraction were found in the 40 °C group at 24h post-mortem; SDS-PAGE and western-blotting results revealed that phosphorylase was associated with the myofibrillar fraction. Furthermore, the 40 °C group had paler surfaces, higher drip loss and lower processing properties. These data suggest that elevated temperature during early post-mortem period, resulting in rapid glycolysis, induced phosphorylase denaturation and association with myofibrillar proteins thus generating pale and exudative characteristics.  相似文献   

4.
Several factors were studied as affecting protein degradation and texture of skipjack tuna muscle following ambient pressure thermal processing (precooking). These included degree of mushy tuna syndrome (MTS) evidenced in the raw meat, raw meat pH, abusive thawing/holding, and precooking temperature/time. Slurries and intact pieces from frozen skipjack tuna, either tempered for 2 h or thawed and held at 25 °C for 22 h (abusive treatment) were heated at temperatures ranging from 40 to 80 °C for up to 2 h, and also at 90 °C for 1 h, with or without prior adjustment of pH to 5 or 7 to favor cathepsin or calpain activity, respectively. Proteolysis of precooked samples was monitored by Lowry assay and SDS-PAGE; cooked texture of intact meat was measured using a Kramer shear press and by sensory profile analysis. Proteolysis maximally occurred in slurries of skipjack tuna muscle that had been abusively stored (22 h at 25 °C) and adjusted to pH 5 prior to heating at 55 °C. Intact pieces of tuna abusively thawed/held for 22 h with subsequent heating at 55 °C also evidenced the most proteolysis and were the least firm in texture. Raw fish that evidenced higher severity of MTS when raw displayed higher levels of proteolysis prior to cooking, which were further increased after cooking at 55 °C. PRACTICAL APPLICATION: The kinetic data presented here can be used to optimize processing conditions for skipjack tuna canning to minimize textural degradation and optimize quality.  相似文献   

5.
The aim of this work was to determine the effects of combined pressure and temperature treatments on beef quality attributes after processing and during chilled storage. Beef M. pectoralis profundus samples were pressurised at 400 and 600 MPa at 35, 45 and 55°C and compared with non-treated (NT) and oven cooked samples. High pressure processing (HPP) at higher temperatures (55°C) resulted in lower Warner Bratzler Shear Force (WBSF) and cook loss values than processing at 35°C. Thiobarbituric acid reactive substances (TBARS) values of pressurised samples were lower than cooked samples after processing and throughout refrigerated storage. An increase (p<0.001) in the omega 6/omega 3 (n6/n3) fatty acid ratio was found when pressure-temperature treatments were compared to raw samples, however, oven cooked samples presented the highest n6/n3 ratio among all of the treatments examined. The reported results show that HPP alters meat quality to a lesser extent than conventional cooking, thereby minimising the processing impact.  相似文献   

6.
7.
The structural changes in beef semitendinosus caused by cooking were studied by performing tensile tests of the isolated meat components (i.e. single muscle fibres and perimysial connective tissue) and related to the toughness of the whole meat. Whole meat toughness was found to increase in two separate phases upon cooking from 40-50°C, and again from 60 to 80°C with a decrease in meat toughness between 50 and 60°C, in agreement with previous studies. The changes in whole meat toughness at temperatures below 60°C were found to correspond to changes in the mechanical properties of the perimysial connective tissue, whereas changes of whole meat toughness at temperatures above 60°C were found to correspond to increased breaking strength of single muscle fibres. The myofibrillar component explained approximately 47% of the variation in whole meat toughness upon cooking whereas inclusion of the connective tissue component increased the goodness of fit.  相似文献   

8.
Anticmicrobial effect of slightly acidic low concentration electrolyzed water (SlALcEW) and strong acidic electrolyzed water (StAEW) on fresh chicken breast meat was evaluated in this study. Meat samples each of 10 ± 0.2 g in weight and 2.5 × 2.5 cm2 in size were experimentally inoculated with Listeria monocytogenes (ATCC 19115) and Salmonella Typhimurium (ATCC 14028) and subjected to dipping treatment (22 ± 2 °C for 10 min) with SlALcEW and StAEW. Shelf-life study was conducted for inoculated and noninoculated meat samples treated with SlALcEW and StAEW at storage temperatures of 5, 15, and 25 °C. Dipping treatment with electrolyzed water significantly (P < 0.05) reduced the background and inoculated pathogens compared to untreated controls. The reduction of 1.5 to 2.3 log CFU/g was achieved by SlALcEW and StAEW against background flora, L. monocytogenes and Salmonella Typhimurium. There was no significant difference (P > 0.05) between the SlALcEW and StAEW treatments efficacy. Comparing treated samples to untreated controls showed that SlALcEW and StAEW treatments extended the shelf life of chicken meat at different temperatures with marginal changes of sensory quality. Although SlALcEW and StAEW treatments showed similar antimicrobial effects but SlALcEW was more beneficial in practical application for its semineutral pH and low chlorine content. PRACTICAL APPLICATION: Food safety issues have led to development of new sanitizers to eliminate spoilage and pathogenic organisms in food. This study provides the foundation for further application of slightly acidic low concentration electrolyzed water (SlALcEW) as a sanitizing agent in meat industry. SlALcEW can be produced on site on demand and no chemicals are necessary except NaCl solution. It does not leave any residue in food due to low chlorine concentration and it is safe to handle for its semineutral pH.  相似文献   

9.
Biofilm formation on food industry surfaces has important health and economic consequences, since they can serve as a potential source of contamination for food products, which may lead to food spoilage or transmission of diseases. Salmonella sp. is one of the most important foodborne pathogens and several studies have led to the discovery that these bacteria are capable of adhering and forming biofilms on different surfaces. The attachment of bacterial cells is affected by several factors, including the medium in which they are grown, motility, growth phase of the cells, type and properties of the inert material, presence of organic material, temperature, pH, contact time, and so on. This investigation focused on the study and quantification of the effects of temperature (20 to 40 °C), pH (4.5 to 7.5), and medium composition (0.5 to 2.5 g/L of peptone) on biofilm formation by Salmonella sp. on stainless steel through surface response modeling. Results highlighted that the target strain was able to adhere on stainless steel, under all the conditions tested. To assess potential differences, the aptitude to biofilm formation (ABF), defined as the time necessary to start adhesion on the surface, was calculated by using the Gompertz equation. This parameter was modeled through a stepwise regression procedure and experimental conditions resulting in the greater ABF were growth in poor media (1.0 to 1.5 g/L of peptone), incubation temperature of about 30 °C, pH close to 6.0. Practical Application: The importance of this work lies in its extension of our knowledge about the effect of different environmental conditions on Salmonella adherence to stainless steel food-processing equipment, as a better understanding of biofilms may provide valuable pathways for the prevention of biofilm formation.  相似文献   

10.
Throughout the manufacturing process of dry-cured ham intense lipid oxidation occurs. Muscle microsomal membranes were used as a model of muscle oxidation in three different procedures: (i) enzymic reaction; (ii) nonenzymic reaction and (iii) sarcoplasmic proteins and microsomal fraction interaction. Porcine M. Biceps femoris from normal and PSE meat qualities treated with 3% NaCl at different temperatures was used as a model of the dry-cured ham process. M. Biceps femoris from normal porcine meat was used to study the in-vitro effect of brine in the oxidative processes. Results showed an important increase of MDA concentration in enzymic and nonenzymic reactions and a higher than normal oxidation level in PSE meat in samples aged for 6 days at 4 °C. The in-vitro assays showed a high level of nonenzymic lipid oxidation at 3 °C incubation. On the other hand, the enzymic reaction showed greater values of MDA at 20 °C incubation. In-vitro NaCl concentrations seemed to have an antioxidant effect in these conditions. Sarcoplasmic proteins had little effect on the oxidative mechanisms suggesting a lack of interaction of these proteins with the microsomal fraction.  相似文献   

11.
The proportion of protein recoverable from bovine heart, kidney, liver, lung, rumen and spleen by alkaline extraction, followed by reacidification, was found to be related to the temperature of extraction, the recovery of both lung and rumen protein at 60°C being approximately twice that at 0°C. Extraction for more than 2 h gave increases in protein recovery. The increased protein solubility was partly due to increased solubilisation of collagen and to a reduction in the quantity of protein precipitated by acidification. Alkaline extraction of lung and rumen at 60°C resulted in the formation of the dipeptide lysinoalanine (0·39 and 0·49 g/16gN, respectively), with tracev amounts at 20°C and 40°C. The electrophoretic patterns of raw meat industry by-products are discussed in the light of previous findings.  相似文献   

12.
High and low rigor temperature effects on sheep meat tenderness and ageing   总被引:1,自引:0,他引:1  
Immediately after electrical stimulation, the paired m. longissimus thoracis et lumborum (LT) of 40 sheep were boned out and wrapped tightly with a polyethylene cling film. One of the paired LT's was chilled in 15°C air to reach a rigor mortis (rigor) temperature of 18°C and the other side was placed in a water bath at 35°C and achieved rigor at this temperature. Wrapping reduced rigor shortening and mimicked meat left on the carcass. After rigor, the meat was aged at 15°C for 0, 8, 26 and 72 h and then frozen. The frozen meat was cooked to 75°C in an 85°C water bath and shear force values obtained from a 1×1 cm cross-section. The shear force values of meat for 18 and 35°C rigor were similar at zero ageing, but as ageing progressed, the 18 rigor meat aged faster and became more tender than meat that went into rigor at 35°C (P<0.001). The mean sarcomere length values of meat samples for 18 and 35°C rigor at each ageing time were significantly different (P<0.001), the samples at 35°C being shorter. When the short sarcomere length values and corresponding shear force values were removed for further data analysis, the shear force values for the 35°C rigor were still significantly greater. Thus the toughness of 35°C meat was not a consequence of muscle shortening and appears to be due to both a faster rate of tenderisation and the meat tenderising to a greater extent at the lower temperature. The cook loss at 35°C rigor (30.5%) was greater than that at 18°C rigor (28.4%) (P<0.01) and the colour Hunter L values were higher at 35°C (P<0.01) compared with 18°C, but there were no significant differences in a or b values.  相似文献   

13.
Tornberg E 《Meat science》2005,70(3):493-508
Globular and fibrous proteins are compared with regard to structural behaviour on heating, where the former expands and the latter contracts. The meat protein composition and structure is briefly described. The behaviour of the different meat proteins on heating is discussed. Most of the sarcoplasmic proteins aggregate between 40 and 60 °C, but for some of them the coagulation can extend up to 90°C. For myofibrillar proteins in solution unfolding starts at 30-32°C, followed by protein-protein association at 36-40°C and subsequent gelation at 45-50°C (conc.>0.5% by weight). At temperatures between 53 and 63°C the collagen denaturation occurs, followed by collagen fibre shrinkage. If the collagen fibres are not stabilised by heat-resistant intermolecular bonds, it dissolves and forms gelatine on further heating. The structural changes on cooking in whole meat and comminuted meat products, and the alterations in water-holding and texture of the meat product that it leads to, are then discussed.  相似文献   

14.
Outbreaks of disease due to vegetative bacterial pathogens associated with acid foods (such as apple cider) have raised concerns about acidified vegetables and related products that have a similar pH (3.2 to 4.0). Escherichia coli O157:H7 and related strains of enterohemorrhagic E. coli (EHEC) have been identified as the most acid resistant vegetative pathogens in these products. Previous research has shown that the lack of dissolved oxygen in many hermetically sealed acid or acidified food products can enhance survival of EHEC compared with their survival under aerobic conditions. We compared the antimicrobial effects of several food acids (acetic, malic, lactic, fumaric, benzoic, and sorbic acids and sulfite) on a cocktail of EHEC strains under conditions representative of non-heat-processed acidified vegetables in hermetically sealed jars, holding the pH (3.2) and ionic strength (0.342) constant under anaerobic conditions. The overall antimicrobial effectiveness of weak acids used in this study was ranked, from most effective to least effective: sulfite > benzoic acid > sorbic acid > fumaric acid > L- and D-lactic acid > acetic acid > malic acid. These rankings were based on the estimated protonated concentrations required to achieve a 5-log reduction in EHEC after 24 h of incubation at 30°C. This study provides information that can be used to formulate safer acid and acidified food products and provides insights about the mode of action of weak acids against EHEC.  相似文献   

15.
The color of pork longissimus dorsi high pressure (HP) treated at 200 to 800MPa at 5 and 20°C for 10min was determined to a high degree by pressure level and to a lesser degree by temperature. Severe color changes appeared up to a threshold pressure at 400MPa. HP treatment at 20°C compared to 5°C resulted in meat, which was less red and slightly lighter. Storage at 2°C for 6days had no effect on lightness due to no further protein denaturation, but meat HP treated above 300MPa became significantly less red and more yellow within the first day of storage. Reflectance spectra showed that a short-lived ferrohemochrome myoglobin species was formed during HP treatment at 300 to 800, but transformed into a brown, ferric form of the pigment within the first day of storage. This explains the observed changes in the redness and yellowness after one day of storage.  相似文献   

16.
In this work, the effect of pre-incubation conditions (temperature: 10, 15, 37°C; pH 5.5, 6.5 and water activity, a(w): 0.997, 0.960) was evaluated on the subsequent growth, survival and enterotoxin production (SE) of Staphylococcus aureus in cooked chicken breast incubated at 10 and 20°C. Results showed the ability of S. aureus to survive at 10°C when pre-incubated at low a(w) (0.960) what could constitute a food risk if osmotic stressed cells of S. aureus which form biofilms survive on dried surfaces, and they are transferred to cooked meat products by cross-contamination. Regarding growth at 20°C, cells pre-incubated at pH 5.5 and a(w) 0.960 had a longer lag phase and a slower maximum growth rate. On the contrary, it was highlighted that pre-incubation at optimal conditions (37°C/pH 6.5/a(w) 0.997) produced a better adaptation and a faster growth in meat products what would lead to a higher SE production. These findings can support the adoption of management strategies and preventive measures in food industries leading to avoid growth and SE production in meat products.  相似文献   

17.
Bacterial pathogens may colonize meat plants and increase food safety risks following survival, stress hardening, or proliferation in meat decontamination fluids (washings). The objective of this study was to evaluate the ability of Escherichia coli O157:H7, Salmonella Typhimurium DT 104, and Listeria monocytogenes to survive or grow in spray-washing fluids from fresh beef top rounds sprayed with water (10 or 85 degrees C) or acid solutions (2% lactic or acetic acid, 55 degrees C) during storage of the washings at 4 or 10 degrees C in air to simulate plant conditions. Inoculated Salmonella Typhimurium DT 104 (5.4 +/- 0.1 log CFU/ml) died off in lactate (pH 2.4 +/- 0.1) and acetate (pH 3.1 +/- 0.2) washings by 2 days at either storage temperature. In contrast, inoculated E. coli O157:H7 (5.2 +/- 0.1 log CFU/ml) and L. monocytogenes (5.4 +/- 0.1 log CFU/ml) survived in lactate washings for at least 2 days and in acetate washings for at least 7 and 4 days, respectively; their survival was better in acidic washings stored at 4 degrees C than at 10 degrees C. All inoculated pathogens survived in nonacid (pH > 6.0) washings, but their fate was different. E. coli O157:H7 did not grow at either temperature in water washings, whereas Salmonella Typhimurium DT 104 failed to multiply at 4 degrees C but increased by approximately 2 logs at 10 degrees C. L. monocytogenes multiplied (0.6 to 1.3 logs) at both temperatures in water washings. These results indicated that bacterial pathogens may survive for several days in acidic, and proliferate in water, washings of meat, serving as potential cross-contamination sources, if pathogen niches are established in the plant. The responses of surviving pathogens in meat decontamination waste fluids to acid or other stresses need to be addressed to better evaluate potential food safety risks.  相似文献   

18.
Environmental monitoring is recognized as an important strategy for controlling Listeria monocytogenes in food processing facilities. Samples are taken by swabbing environmental surfaces, and the swabs are immersed in a medium for transport to the laboratory. In this study, buffered peptone water (BPW), Dey-Engley neutralizing broth (DE), neutralizing buffer (NB), Letheen broth (LE), and newly described MCC buffer (MCC) were evaluated as transport media for recovery of sanitizer-stressed L. monocytogenes from inoculated swabs. After storage at 4°C, the media performed similarly, but at 25°C relative recovery efficiency from the inoculated sponges was DE > LE > BPW > MCC > NB. Recoveries from stainless steel surfaces followed similar trends. MCC, DE, and NB were compared for L. monocytogenes recovery in the presence of Escherichia coli, Enterococcus faecalis, Lactobacillus plantarum, Pseudomonas fluorescens, and Listeria innocua. After 4°C storage, all population levels changed little; after 25°C storage, DE allowed the best growth of L. monocytogenes regardless of other species present. MCC, DE, and NB performed similarly for recovery of L. monocytogenes from an artificial milk biofilm and for recovery of Listeria spp. from swabs obtained from a meat processing facility. Transport medium formulation, time and temperature of swab storage, and coexistence of other species affect recovery of sanitizer-stressed L. monocytogenes from environmental swabs. The study confirms the need to maintain 4°C storage conditions during swab transport.  相似文献   

19.
Microbiological examination of 29 packages of precooked, vacuum-packaged beef and pork products purchased at local and regional supermarkets along with 110 packages of precooked, vacuum-packaged, sliced roast beef obtained from a major meat processor did not disclose the presence of Escherichia coli, coagulase-positive Staphylococcus aureus, Clostridium perfringens or Salmonella. The effects of storage temperature and length of storage on the microflora of 110 packages of sliced roast beef were determined at specific intervals of storage up to 84 days at 1° and 5°C, and up to 28 days at 10°C. The microflora of samples stored at 1° and 5°C was dominated by Lactobacillus spp. when examined on day 28 and throughout the remainder of the 84-day test period. The microflora of samples held at 10°C was dominated by Lactobacillus spp. until late in storage when Hafnia alvei became a major portion of the bacterial population. Precooked, sliced roast beef had a longer shelf life in laboratory controlled evaluations when stored at 1°C as opposed to 5° or 10°C.  相似文献   

20.
High pressure/thermal treatment effects on the texture of beef muscle   总被引:3,自引:0,他引:3  
Ma HJ  Ledward DA 《Meat science》2004,68(3):347-355
The effects of high pressure (to 800 MPa) applied at different temperatures (20-70 °C) for 20 min on beef post-rigor longissimus dorsi texture were studied. Texture profile analysis showed that when heated at ambient pressure there was the expected increase in hardness with increasing temperature and when pressure was applied at room temperature there was again the expected increase in hardness with increasing pressure. Similar results to those found at ambient temperature were found when pressure was applied at 40 °C. However, at higher temperatures, 60 and 70 °C it was found that pressures of 200 MPa caused large and significant decreases in hardness. The results found for hardness were mirrored by those for gumminess and chewiness. To further understand the changes in texture observed, intact beef longissimus dorsi samples and extracted myofibrils were both subjected to differential scanning calorimetry after being subjected to the same pressure/temperature regimes. As expected collagen was reasonably inert to pressure and only at temperatures of 60-70 °C was it denatured/unfolded. However, myosin was relatively easily unfolded by both pressure and temperature and when pressure denatured a new and modified structure was formed of low thermal stability. Although this new structure had low thermal stability at ambient pressure it still formed in both the meat and myofibrils when pressure was applied at 60 °C. It seems unlikely that structurally induced changes can be a major cause of the significant loss of hardness observed when beef is treated at high temperature (60-70 °C) and 200 MPa and it is suggested that accelerated proteolysis under these conditions is the major cause.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号