首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Dark fermentation is a promising biological method for hydrogen production because of its high production rate in the absence of light source and variety of the substrates. In this study, hydrogen production potential of four dark fermentative bacteria (Clostridium butyricum, Clostridium pasteurianum, Clostridium beijerinckii, and Enterobacter aerogenes) using glucose as substrate was investigated under anaerobic conditions. Batch experiments were conducted to study the effects of initial glucose concentration on hydrogen yield, hydrogen production rate and concentration of volatile fatty acids (VFA) in the effluents. Among the four different fermentative bacteria, C. butyricum showed great performance at 10 g/L of glucose with hydrogen production rate of 18.29 mL-H2/L-medium/hand specific hydrogen production rate of 3.90 mL-H2/g-biomass/h. In addition, it was found that the distribution of volatile fatty acids was different among the fermentative bacteria. C. butyricum and C. pasteurianum had higher ratio of acetate to butyrate compared to the other two species, which favored hydrogen generation.  相似文献   

2.
Dark fermentation, photo fermentation, and autotrophic microalgae cultivation were integrated to establish a high-yield and CO2-free biohydrogen production system by using different feedstock. Among the four carbon sources examined, sucrose was the most effective for the sequential dark (with Clostridium butyricum CGS5) and photo (with Rhodopseudomonas palutris WP3-5) fermentation process. The sequential dark–photo fermentation was stably operated for nearly 80 days, giving a maximum H2 yield of 11.61 mol H2/mol sucrose and a H2 production rate of 673.93 ml/h/l. The biogas produced from the sequential dark–photo fermentation (containing ca. 40.0% CO2) was directly fed into a microalga culture (Chlorella vulgaris C–C) cultivated at 30 °C under 60 μmol/m2/s illumination. The CO2 produced from the fermentation processes was completely consumed during the autotrophic growth of C. vulgaris C–C, resulting in a microalgal biomass concentration of 1999 mg/l composed mainly of 48.0% protein, 23.0% carbohydrate and 12.3% lipid.  相似文献   

3.
In this work, a carbohydrate-rich microalga, Chlorella vulgaris ESP6, was grown photoautotrophically to fix the CO2. The resulting microalgal biomass was hydrolyzed by acid or alkaline/enzymatic treatment and was then used for biohydrogen production with Clostridium butyricum CGS5. The C. vulgaris biomass could be effectively hydrolyzed by acid pretreatment while similar hydrolysis efficiency was achieved by combination of alkaline pretreatment and enzymatic hydrolysis. The biomass of C. vulgaris ESP6 containing a carbohydrate content of 57% (dry weight basis) was efficiently hydrolyzed by acid treatment with 1.5% HCl, giving a reducing sugars (RS) yield of nearly 100%. C. butyricum CGS5 could utilize RS from C. vulgaris ESP6 biomass to produce hydrogen without any additional organic carbon sources. The optimal conditions for hydrogen production were 37 °C and a microalgal hydrolysate loading of 9 g RS/L with pH-controlled at 5.5. Under the optimal conditions, the cumulative H2 production, H2 production rate, and H2 yield were 1476 ml/L, 246 ml/L/h, and 1.15 mol/mol RS, respectively. The results demonstrate that the C. vulgaris biomass has the potential to serve as effective feedstock for dark fermentative H2 production.  相似文献   

4.
In this study, hydrogen gas was produced from starch feedstock via combination of enzymatic hydrolysis of starch and dark hydrogen fermentation. Starch hydrolysis was conducted using batch culture of Caldimonas taiwanensis On1 able to hydrolyze starch completely under the optimal condition of 55 °C and pH 7.5, giving a yield of 0.46–0.53 g reducing sugar/g starch. Five H2-producing pure strains and a mixed culture were used for hydrogen production from raw and hydrolyzed starch. All the cultures could produce H2 from hydrolyzed starch, whereas only two pure strains (i.e., Clostridium butyricum CGS2 and CGS5) and the mixed culture were able to ferment raw starch. Nevertheless, all the cultures displayed higher hydrogen production efficiencies while using the starch hydrolysate, leading to a maximum specific H2 production rate of 116 and 118 ml/g VSS/h, for Cl. butyricumCGS2 and Cl. pasteurianum CH5, respectively. Meanwhile, the H2 yield obtained from strain CGS2 and strain CH5 was 1.23 and 1.28 mol H2/mol glucose, respectively. The best starch-fermenting strain Cl. butyricum CGS2 was further used for continuous H2 production using hydrolyzed starch as the carbon source under different hydraulic retention time (HRT). When the HRT was gradually shortened from 12 to 2 h, the specific H2 production rate increased from 250 to 534 ml/g  VSS/h, whereas the H2 yield decreased from 2.03 to 1.50  mol H2/mol glucose. While operating at 2 h HRT, the volumetric H2 production rate reached a high level of 1.5 l/h/l.  相似文献   

5.
Efficient conversion of glycerol waste from biodiesel manufacturing processes into biohydrogen by the hyperthermophilic eubacterium Thermotoga neapolitana DSM 4359 was investigated. Biohydrogen production by T. neapolitana was examined using the batch cultivation mode in culture medium containing pure glycerol or glycerol waste as the sole substrate. Pre-treated glycerol waste showed higher hydrogen (H2) production than untreated waste. Nitrogen (N2) sparging and pH control were successfully implemented to maintain the culture pH and to reduce H2 partial pressure in the headspace for optimal growth rate and to enhance hydrogen production from the glycerol waste. It was found that hydrogen production increased from 1.24 ± 0.06 to 1.98 ± 0.1 mol-H2 mol−1 glycerolconsumed by optimising N2 sparging and pH control. We observed that in medium containing 0.05 M HEPES, with three cycles of N2 sparging, the H2 yield increased to 2.73 ± 0.14 mol-H2 mol−1 glycerolconsumed, which was 2.22-fold higher than the non-N2 sparged H2 yield (1.23 ± 0.06 mol-H2 mol−1 glycerolconsumed).  相似文献   

6.
Raw glycerol is a tempting substrate for fermentations, but contains impurities that can be inhibitory for organisms. In this study, raw glycerol tolerance and contamination risk of pure bacterial culture at hypersaline process conditions were evaluated. The inhibitory effect of raw glycerol was similar on a halophilic (Halanaerobium saccharolyticum) and a non-halophilic (Clostridium butyricum) bacterium implying the inhibition originating from methanol or other impurities rather than salt. The hypersaline process conditions decreased efficiently contaminations and no growth of contaminants was observed at and above 125 g/l NaCl. Halophilic H2 and 1,3-PD production from raw glycerol were studied separately as 1-stage processes and jointly as 2-stage process in non-sterile conditions. Non-sterile conditions were successfully applied and the highest production yields obtained were 3.0 mol H2/mol glycerol and 0.66 mol 1,3-PD/mol glycerol (1-stage processes), whereas the highest cumulative production was 74 mmol H2/l culture and 31 mmol 1,3-PD/l culture (2-stage process).  相似文献   

7.
8.
The present study investigated hydrogen production potential of novel marine Clostridium amygdalinum strain C9 isolated from oil water mixtures. Batch fermentations were carried out to determine the optimal conditions for the maximum hydrogen production on xylan, xylose, arabinose and starch. Maximum hydrogen production was pH and substrate dependant. The strain C9 favored optimum pH 7.5 (40 mmol H2/g xylan) from xylan, pH 7.5–8.5 from xylose (2.2–2.5 mol H2/mol xylose), pH 8.5 from arabinose (1.78 mol H2/mol arabinose) and pH 7.5 from starch (390 ml H2/g starch). But the strain C9 exhibited mixed type fermentation was exhibited during xylose fermentation. NaCl is required for the growth and hydrogen production. Distribution of volatile fatty acids was initial pH dependant and substrate dependant. Optimum NaCl requirement for maximum hydrogen production is substrate dependant (10 g NaCl/L for xylose and arabinose, and 7.5 g NaCl/L for xylan and starch).  相似文献   

9.
Dark fermentative hydrogen production by a hot spring culture was studied from different sugars in batch assays and from xylose in continuous stirred tank reactor (CSTR) with on-line pH control. Batch assays yielded hydrogen in following order: xylose > arabinose > ribose > glucose. The highest hydrogen yield in batch assays was 0.71 mol H2/mol xylose. In CSTR the highest H2 yield and production rate at 45 °C were 1.97 mol H2/mol xylose and 7.3 mmol H2/h/L, respectively, and at 37 °C, 1.18 mol H2/mol xylose and 1.7 mmol H2/h/L, respectively. At 45 °C, microbial community consisted of only two bacterial strains affiliated to Clostridium acetobutulyticum and Citrobacter freundii, whereas at 37 °C six Clostridial species were detected. In summary hydrogen yield by hot spring culture was higher with pentoses than hexoses. The highest H2 production rate and yield and thus, the most efficient hydrogen producing bacteria were obtained at suboptimal temperature of 45 °C for both mesophiles and thermophiles.  相似文献   

10.
Immobilized Clostridium butyricum TISTR 1032 on sugarcane bagasse improved hydrogen production rate (HPR) approximately 1.2 times in comparison to free cells. The optimum conditions for hydrogen production by immobilized C. butyricum were initial pH 6.5 and initial sucrose concentration of 25 g COD/L. The maximum HPR and hydrogen yield (HY) of 3.11 L H2/L substrate·d and 1.34 mol H2/mol hexose consumed, respectively, were obtained. Results from repeated batch fermentation indicated that the highest HPR of 3.5 L H2/L substrate·d and the highest HY of 1.52 mol H2/mol hexose consumed were obtained at the medium replacement ratio of 75% and 50% respectively. The major soluble metabolites in both batch and repeated batch fermentation were butyric and acetic acids.  相似文献   

11.
This study presents the production of biohydrogen from rice mill wastewater. The acid hydrolysis and enzymatic hydrolysis operating conditions were optimized, for better reducing sugar production. The effect of pH and fermentation time on biohydrogen production from acid and enzymatic hydrolyzed rice mill wastewater was investigated, using Enterobacter aerogenes and Citrobacter ferundii. The enzymatic hydrolysis produced the maximum reducing sugar (15.8 g/L) compared to acid hydrolysis (14.2 g/L). The growth data obtained for E. aerogenes and C. ferundii, fitted well with the Logistic equation. The hydrogen yields of 1.74 mol H2/mol reducing sugar, and 1.40 mol H2/mol reducing sugar, were obtained from the hydrolyzate obtained from enzymatic and acid hydrolysis, respectively. The maximum hydrogen yield was obtained from E. aerogenes compared to C. ferundii, and the optimum pH for better hydrogen production was found to be in the range from 6.5 to 7.0. The chemical oxygen demand (COD) reduction obtained was around 71.8% after 60 h of fermentation.  相似文献   

12.
Enterobacter aerogenes has a known ability to convert glycerol during a fermentative process to yield hydrogen and ethanol as the main products. A Box-Behnken design and response surface methodology were used to determine the optimal concentration of some media constituents and oxygen to maximize the yield of biohydrogen. Results indicated that the concentration of the salts studied: NH4NO3, FeSO4, and Na2HPO4 and; the presence of oxygen in the pre-culture significantly influence the production of biohydrogen. Optimal conditions were determined to be 7.5% O2 in the inoculum transfer step, ratio of inocula 18%, 8 g/L of Na2HPO4, 0.00625 g/L of FeSO4 and 1.5 g/L of NH4NO3. These optimal conditions resulted in a measured yield of 0.85 mol H2/mol glycerol at a substrate concentration of 15 g/L and a maximum predicted yield of 0.95 mol H2/mol glycerol at a substrate concentration of 21 g/L. These results were obtained using lower concentrations of salts than in previous studies, corresponding to a 76% cost savings. These experimental results also demonstrated the importance of optimizing the amount of oxygen present in the biological system rather than maintaining complete anaerobic conditions.  相似文献   

13.
This study evaluates the effect of pH (4-7) on fermentative biohydrogen production by utilizing three isolated Clostridium species. Fermentative batch experiments show that the maximum hydrogen yield for Clostridium butyricum CGS2 (1.77 mmol/mmol glucose) is achieved at pH 6, whereas a high hydrogen production with Clostridium beijerinckii L9 (1.72 mmol/mmol glucose) and Clostridium tyrobutyricum FYa102 (1.83 mmol/mmol glucose) could be achieved under uncontrolled pH conditions (initial pH of 6.4-6.6 and final pH of 4-4.2). Low hydrogen yields (0-0.6 mmol/mmol glucose) observed at pH 4 are due likely to inhibitory effects on the microbial growth, although a low pH can be thermodynamically favorable for hydrogen production. The low hydrogen yields (0.12-0.64 mmol/mmol glucose) observed at pH 7 are attributed not only to thermodynamically unfavorable, but also metabolically unfavorable for hydrogen production. The relatively high levels of lactate, propionate, or formate observed at pH 7 reflect presumably the high enzymatic activities responsible for their production, together with the low hydrogenase activity, resulting in a low hydrogen production. A correlation analysis of the data from present and previous studies on biohydrogen production with pure Clostridium cultures and mixed microflora indicates a close relation between the hydrogen yield (YH2) and the (YH2)/(2(YHAc+YHBu)) ratio, with the observed correlation coefficient (0.787) higher than that (0.175) between YH2 and the molar ratio of butyrate to acetate (B/A). Based on the (YH2)/(2(YHAc+YHBu)) ratios observed at different pHs, a control of pH at 5.5-6.8 would seem to be an effective means to enhance the fermentative biohydrogen production.  相似文献   

14.
Statistically based experimental designs were applied to optimize the fermentation process parameters for hydrogen (H2) production by co-culture of Clostridium acidisoli and Rhodobacter sphaeroides with sucrose as substrate. An initial screening using the Plackett–Burman design identified three factors that significantly influenced H2 yield: sucrose concentration, initial pH, and inoculum ratio. These factors were considered to have simultaneous and interdependent effects. A central composite design and response surface analysis were adopted to further investigate the mutual interactions among the factors and to identify the values that maximized H2 production. The optimal substrate concentration, initial pH, and inoculum ratio of C. acidisoli to R. sphaeroides were 11.43 g/L sucrose, 7.13, and 0.83, respectively. Using these optimal culture conditions, substrate conversion efficiency was determined as 10.16 mol H2/mol sucrose (5.08 mol H2/mol hexose), which was near the expected value of 10.70 mol H2/mol sucrose (5.35 mol H2/mol hexose).  相似文献   

15.
Paper and pulp industry effluent was enzymatically hydrolysed using crude cellulase enzyme (0.8–2.2FPU/ml) obtained from Trichoderma reesei and from the hydrolysate biohydrogen was produced using Enterobacter aerogenes. The influence of temperature and incubation time on enzyme production was studied. The optimum temperature for the growth of T. reesei was found to be around 29 °C. The enzyme activity of 2.5 FPU/ml was found to produce about 22 g/l of total sugars consisting mainly of glucose, xylose and arabinose. Relevant kinetic parameters with respect to sugars production were estimated using two fraction model. The enzymatic hydrolysate was used for the biohydrogen production using E. aerogenes. The growth data obtained for E. aerogenes were fitted well with Monod and Logistic equations. The maximum hydrogen yield of 2.03 mol H2/mol sugar and specific hydrogen production rate of 225 mmol of H2/g cell/h were obtained with an initial concentration of 22 g/l of total sugars. The colour and COD of effluent was also decreased significantly during the production of hydrogen. The results showed that the paper and pulp industry effluent can be used as a substrate for biohydrogen production.  相似文献   

16.
Oil palm empty fruit bunch (OPEFB) was pretreated by local plantation industry to increase the accessibility towards its fermentable sugars. This pretreatment process led to the formation of a dark sugar-rich molasses byproduct. The total carbohydrate content of the molasses was 9.7 g/L with 4.3 g/L xylose (C5H10O5). This pentose-rich molasses was fed as substrate for biohydrogen production using locally isolated Clostridium butyricum KBH1. The effect of initial pH and substrate concentration on the yield and productivity of hydrogen production were investigated in this study. The best result for the fermentation performed in 70 mL working volume was obtained at the initial reaction condition of pH 9, 150 rpm, 37 °C and 5.9 g/L total carbohydrate. The maximum hydrogen yield was 1.24 mol H2/mol pentose and the highest productivity rate achieved was 0.91 mmol H2/L/h. The optimal pH at pH 9 was slightly unusual due to the presence of inhibitors, mainly furfural. The furfural content decreased proportionally as pH was increased. The optimal experiment condition was repeated and continued in fermentation volume of 200 mL. The maximum hydrogen yield found for this run was 1.21 mol H2/mol pentose while the maximum productivity was 1.1 mmol H2/L/h. The major soluble metabolites in the fermentation were n-butyric acid and acetic acid.  相似文献   

17.
This study investigates the mesophilic biohydrogen production from glucose using a strictly anaerobic strain, Clostridium butyricum CWBI1009, immobilized in a trickling bed sequenced batch reactor (TBSBR) packed with a Lantec HD Q-PAC® packing material (132 ft2/ft3 specific surface). The reactor was operated for 62 days. The main parameters measured here were hydrogen composition, hydrogen production rate and soluble metabolic products. pH, temperature, recirculation flow rate and inlet glucose concentration at 10 g/L were the controlled parameters. The maximum specific hydrogen production rate and the hydrogen yield found from this study were 146 mmol H2/L.d and 1.67 mol H2/mol glucose. The maximum hydrogen composition was 83%. Following a thermal treatment, the culture was active without adding fresh inoculum in the subsequent feeding and both the hydrogen yield and the hydrogen production rate were improved. For all sequences, the soluble metabolites were dominated by the presence of butyric and acetic acids compared to other volatile fatty acids. The results from the standard biohydrogen production (BHP) test which was conducted using samples from TBSBR as inoculum confirmed that the culture generated more biogas and hydrogen compared to the pure strain of C. butyricum CWBI1009. The effect of biofilm activity was studied by completely removing (100%) the mixed liquid and by adding fresh medium with glucose. For three subsequent sequences, similar results were recorded as in the previous sequences with 40% removal of spent medium. The TBSBR biofilm density varied from top to bottom in the packing bed and the highest biofilm density was found at the bottom plates. Moreover, no clogging was evidenced in this packing material, which is characterized by a relatively high specific surface area. Following a PCA test, contaminants of the Bacillus genus were isolated and a standard BHP test was conducted, resulting in no hydrogen production.  相似文献   

18.
The production of biohydrogen from glycerol, by the hyperthermophilic bacterium Thermotoga maritima DSM 3109, was investigated in batch and chemostat systems. T. maritima converted glycerol to mainly acetate, CO2 and H2. Maximal hydrogen yields of 2.84 and 2.41 hydrogen per glycerol were observed for batch and chemostat cultivations, respectively. For batch cultivations: i) hydrogen production rates decreased with increasing initial glycerol concentration, ii) growth and hydrogen production was optimal in the pH range of 7–7.5, and iii) a yeast extract concentration of 2 g/l led to optimal hydrogen production. Stable growth could be maintained in a chemostat, however, when dilution rates exceeded 0.025 h−1 glycerol conversion was incomplete. A detailed overview of the catabolic pathway involved in glycerol fermentation to hydrogen by T. maritima is given. Based on comparative genomics the ability to grow on glycerol can be considered as a general trait of Thermotoga species. The exceptional bioenergetics of hydrogen formation from glycerol is discussed.  相似文献   

19.
The effects of FeSO4 and synthesized iron oxide nanoparticles (0–250 mg/L) on fermentative hydrogen production from glucose and sucrose, using Enterobacter cloacae were investigated, to find out the enhancement of efficiency. The maximum hydrogen yields of 1.7 ± 0.017 mol H2/mol glucose and 5.19 ± 0.12 mol H2/mol sucrose were obtained with 25 mg/L of ferrous iron supplementation. In comparison, the maximum hydrogen yields of 2.07 ± 0.07 mol H2/mol glucose and 5.44 ± 0.27 mol H2/mol sucrose were achieved with 125 mg/L and 200 mg/L of iron oxide nanoparticles, respectively. These results indicate that the enhancement of hydrogen production on the supplementation of iron oxide nanoparticles was found to be considerably higher than that of ferrous iron supplementation. The activity of E. cloacae in a glucose and sucrose fed systems was increased by the addition of iron oxide nanoparticles, but the metabolic pathway was not changed. The results revealed that the glucose and sucrose fed systems conformed to the acetate/butyrate fermentation type.  相似文献   

20.
A thermotolerant fermentative hydrogen-producing strain was isolated from crude glycerol contaminated soil and identified as Klebsiella pneumoniae on the basis of the 16S rRNA gene analysis as well as physiological and biochemical characteristics. The selected strain, designated as K. pneumoniae TR17, gave good hydrogen production from crude glycerol. Culture conditions influencing the hydrogen production were investigated. The strain produced hydrogen within a wide range of temperature (30–50 °C), initial pH (4.0–9.0) and crude glycerol concentration (20–100 g/L) with yeast extract as a favorable nitrogen source. In batch cultivation, the optimal conditions for hydrogen production were: cultivation temperature at 40 °C, initial pH at 8.0, 20 g/L crude glycerol and 2 g/L yeast extract. This resulted in the maximum cumulative hydrogen production of 27.7 mmol H2/L and hydrogen yield of 0.25 mol H2/mol glycerol. In addition, the main soluble metabolites were 1,3-propanediol, 2,3-butanediol and ethanol corresponding to the production of 3.52, 2.06 and 3.95 g/L, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号