首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
构建LNG低温朗肯循环发电系统是冷能利用的主要方式之一。为了提高LNG冷能回收效率,根据LNG气化特性,笔者提出了冷能的分段利用模型,并采用火用分析的方法对低温朗肯循环各环节的火用损失进行了分析,得出如下结论:①LNG气化曲线存在较为明显的分段规律,为建立高效的冷能发电循环提供了基础;②LNG低温朗肯循环发电系统的火用损失主要集中在换热设备当中,因而系统的优化重点应放在对于换热设备尤其是冷凝器的优化上,减少平均换热温差能有效降低换热器的传热不可逆损失;③对LNG按不同温度段进行回收利用,构建梯级循环发电系统,能有效减小循环冷火用损失,提高LNG冷能回收效率。根据LNG气化特性构建的梯级循环流程较单极循环流程而言,总的冷火用损失显著减少,冷火用利用效率提高了16.2%。  相似文献   

2.
液化循环中LNG冷量利用的热力学研究   总被引:1,自引:0,他引:1  
LNG在气化过程中会有大量冷量释放。对LNG的冷量进行了初步的能量分析,并以克劳特液化循环为例,对LNG的流量和换热器压力对于气体液化循环的影响进行初步探讨,并采用流程模拟软件对其影响进行了验证,研究了LNG流量对循环液化系数、单位能耗、循环膨胀量和系统〖HT5”,7〗火〖KG-*3〗用〖HT5”F〗效率的影响。结果表明,利用LNG冷量的克劳特循环,可以减少其膨胀气量,提高液化系数,降低单位液化产品的能耗,提高循环〖HT5”,7〗火〖KG-*3〗用〖HT5”F〗效率。找到分析LNG冷量有效的方法,对实践中利用LNG冷量有积极的意义。  相似文献   

3.
为对不同温度区间的低温余热及LNG冷能实现梯级利用并回收CO2,提出了一种基于闪蒸循环的冷热电联供系统。对该系统设备及循环模块的热力性能、[火用]经济与[火用]环境进行了分析。结果表明,闪蒸循环中蒸发压力为4.5 MPa、蒸发温度为115℃、一级膨胀压力为800 kPa、分离器进口干度值为0.2时,该联供系统性能最佳,其净输出功、热效率、[火用]效率、LNG冷[火用]效率和CO2捕集量分别为488.27 kW、61.290%、68.050%、69.530%和853.78 kW。此外,换热器与有机朗肯循环模块具有进一步降低成本与环境影响的潜力。  相似文献   

4.
芳烃联合装置流程长、产品多且沸点接近,是炼油厂最大的耗能部门,其中大量低温热没有回收利用是主要原因。总结了国内芳烃装置低温余热回收利用的实践,计算了中海石油炼化有限责任公司惠州炼化分公司芳烃装置的低温余热分布,在成功回收邻二甲苯塔塔顶油气潜热产13 t/h,0.55 MPa蒸汽的基础上,提出了进一步回收利用余热的措施,包括:1将芳烃余热转化成热水并外送到邻近的石化园区作为其低温热阱热源,以减少园区蒸汽消耗;2实施装置内部热集成,升级利用低温热;3针对惠州地处亚热带,无采暖需求,伴热负荷小,且电价相对较高的现状,研究采用有机工质朗肯循环回收余热发电。计算表明,经过低温热热水输出、蒸汽凝结水发电改造和装置热集成改造,实现节能量406.1 TJ/a,具有良好的经济效益和社会效益。  相似文献   

5.
针对CO_2排放过量的问题,提出了两种利用液化天然气冷能进行朗肯循环发电和液化CO_2的新工艺流程。流程1在常规朗肯循环的基础上增加了再热循环和回热循环;流程2在保证预冷和液化CO_2所需冷能不变的情况下,在流程1的基础上集成了氮气液化系统,目的是降低蒸发器内冷热物流的品位差,提高蒸发器的火用效率。分析了烟气温度、循环工质压力和流量对流程比功和火用效率的影响。模拟计算得到,流程1、流程2的火用效率分别可达到49.70%和49.80%,对应比功分别为237.70 kJ/kg LNG和235.20 kJ/kg LNG,CO_2的液化率为0.60 kg/kg LNG。结合具体实例进行计算,证明新流程具有良好的经济效益和环境效益。  相似文献   

6.
直燃机排烟热回收技术研究   总被引:1,自引:1,他引:0  
直燃型溴化锂吸收式冷温水机组是以天然气等燃料为驱动能源的空调冷热源设备(简称直燃机)。直燃机排出的余热以热能的形式存在。对这部分不同温度的余热采用不同的技术进行回收,可以节省能源,提高能源总利用率。其中回收烟气中的部分热量,作为吸收式制冷机的热源,通过制冷循环达到制冷的目的,是利用余热的有效途径之一。为此,以带排烟热回收发生器的串联循环为例,对这种循环进行了热力计算,确定了高压发生器和排烟热回收发生器的结构形式和传热管尺寸。通过热回收,一次能源效率可提高2.03%,取得了较好的余热回收效果。  相似文献   

7.
LNG冷量优化集成利用技术   总被引:7,自引:1,他引:6  
我国将相继在沿海地区建成多个LNG接收站,每年将进口数以千万吨计的LNG,同时携带数着巨额冷量,而这些冷量可用于发电、空气分离、制造干冰、低温冷库等众多领域。基于国外LNG冷量利用现状,指出我国即将展开和实施此项技术还存在着:过程火用损较大,缺乏系统、全面的LNG冷量利用技术的研发指导机制,以及宏观调控力度薄弱等问题,进而提出了发展LNG冷量的集成利用方案,可为此类技术的研发利用提供新思路。以福建即将进口的LNG为例,模拟了空气分离与干冰制备的集成工艺流程,结果表明:福建每年进口的260×104t LNG可以冷却290×104t空气,相当于60000 m3/h的氧气制备规模,还可以生产100×104t的干冰,其过程火用损较小;其剩余的高温位冷量可应用于低温冻结库或冰灯等项目,这对主体装置的实施效果和过程火用损的影响较小。该技术的优点在于可灵活控制冷却空气的液化率,基本不用冷却循环水,流程简单,设备投资少,能耗低等。  相似文献   

8.
分析环氧乙烷/乙二醇装置低温热利用情况,通过对环氧乙烷汽提塔、轻组分汽提塔、干燥塔进料流程的优化,最大限度的回收装置内低温热,提升进料温度。针对装置冷量不足,而低温热过剩的情况,提出利用以低温热为热源的溴化锂制冷技术,制取低温冷却水,降低循环吸收水的温度。改进后,可节约蒸汽13.5 t/h、降低冷却负荷103 GJ/h,节水节电效果明显。  相似文献   

9.
在相似理论的指导下,通过对比分析氮气和天然气的物性,对液氮模拟液化天然气汽车冷能回收系统进行了相似模化分析。结果表明,在LNG冷能回收系统各换热器中,表征氮气与天然气流动与换热的主要准则--雷诺数准则和普朗特数准则非常接近,二者偏差均在保持在5%以内。在此基础上建立的试验系统测试结果表明,液氮模拟LNG冷量回收汽车空调系统具有较好的冷量利用性能。氮气流量在5.5~8.5 m3/h范围内,系统回收冷量满足汽车空调送风温度要求。因而,作为研究的一个重要步骤,可以采用安全、便宜的液氮替代液化天然气,进行系统冷能回收实验研究。  相似文献   

10.
本文介绍低沸点工作介质的兰金循环特点及目前国外运用这种循环方法回收和利用低温余热的情况。用“(火用)”效率分析炼厂运用这种方法回收余热的经济效果,提出炼厂建造这种装置的投资估算指标,并同目前国内各种常规发电方案进行对比,说明采用低沸点工作介质法回收低温热能的优越性。  相似文献   

11.
多级冷能发电循环构型的优化是提高LNG冷能发电系统?效率的重要途径。从减少有机朗肯循环工质蒸发器?损失的角度,对现有三级发电循环方案进行了HYSYS模拟分析和改进,提出了新型三级冷能发电循环优化方案,并进行了技术经济评价。结果表明:新型三级冷能发电循环优化方案净输出功较现有方案增加了438.00 kW,?效率提高了10.35%;项目财务内部收益率和净现值分别提升了5.30%和28.23%,平准化度电成本降低了3.16%,新型三级冷能发电循环优化方案具有更好的盈利能力和降本增效效果。以上研究可为LNG接收站冷能发电工艺的优化设计和经济评价提供参考。  相似文献   

12.
基于冷能梯级利用原则,利用Aspen HYSYS模拟分析了现有LNG冷能用于橡胶粉碎的流程,并进行热力学分析,找出了系统中的火用损失最大的设备。根据火用分析结果,得到改进流程,分析两流程之间的差异。结果表明:低温换热器火用损失占比最大,在两流程中分别占比49%、30%,改进流程火用效率从73.64%提升至77.94%,LNG流量每小时减少30.77%,约节能670kW;冷能利用系统火用效率随LNG进口温度降低而升高,梯级利用才能发挥出LNG所含冷能的最大价值。  相似文献   

13.
基于热力学原理对液化天然气冷量及冷量火用进行了分析计算,设计了利用液化天然气冷量进行废旧轮胎低温粉碎的工艺流程。该流程包括粉碎和冷量传递两部分。粉碎过程分常温粗碎、冷冻和低温细碎3个阶段。冷量传递过程以液化天然气为冷源,以空气为中间冷媒,将冷量先传给空气,再由空气去喷吹冷却粗胶粉。该流程能实现液化天然气冷量的有效利用,达到冷冻废旧轮胎制取精细胶粉的目的。  相似文献   

14.
介绍了低温热发电技术和第二类吸收式热泵技术的基本原理与应用案例,包括低温热有机朗肯循环发电,第二类吸收式热泵制取低压蒸汽、供暖热水。基于热效率和火用效率的分析评价表明,提升低温热的能级是两类技术的共性特征,这两类技术的热效率均偏低。从热效率和火用效率角度分析,第二类吸收式热泵技术优于低温热发电技术;从产品能源能级角度分析,低温热发电技术优于第二类吸收式热泵技术。当低温热供给温度高于110℃时,推荐低温热发电技术;低温热供给温度高于110℃、且全厂低压蒸汽不足时,推荐第二类吸收式热泵产低压蒸汽技术;低温余热资源供给温度高于110℃、且存在冬季供暖工况,或存在大量低温热阱时,推荐第二类吸收式热泵制取热媒水技术。  相似文献   

15.
目前的天然气发电系统以富氧燃烧(O_2/CO_2循环燃烧)为主,其空分制氧以及碳捕获能耗过高,导致发电效率明显降低;较之于前者,O_2/H_2O燃烧系统作为新一代的Oxy-combustion燃烧方式系统,污染物排放量更低,但其燃烧过程仍需采用空分制氧,CO_2的压缩耗能依然较高。为此,构建了一套将LNG冷能用于O_2/H_2O富氧燃烧的碳捕获系统,并建立了该系统的数学模型以计算其热效率、效率,在此基础上开展与同样利用LNG冷能进行碳捕获的COOLCEP系统的对比分析。结果表明:(1)该系统采用高压燃烧方式,以水作为燃烧循环工质,同时对LNG采用梯级利用方式,降低了空分制氧和碳捕获系统的能耗,提高了系统的发电效率,同时以低成本完成了碳捕获;(2)该系统的热效率和效率随燃气轮机进口温度升高不断提高,在循环水量和燃烧压力分别为13.5 kmol/s和1.6 MPa、燃气轮机进口温度达到1 328.1℃时,热效率达到最大值,系统热效率、效率分别为57.9%和42.7%;(3)较之于COOLCEP系统,O_2/H_2O燃烧系统能耗明显降低,系统热效率、效率分别提高了6.3%、5.4%。  相似文献   

16.
目的 为实现LNG冷能的回收利用、氢气的绿色制取和液态储运的多重目标,提出LNG冷能发电作为电解水制氢的电力来源,同时提供氢液化用能,并辅助氢预冷的一套综合能源系统.方法 使用HYSYS软件对LNG冷能发电循环及氢液化进行模拟测算,建立系统中各单元物料与电能匹配关系的数学模型,通过模型求解获得了直接膨胀、朗肯循环、联合...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号