首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical model based on Eulerian/Lagrangian method has been developed to predict particle collection efficiency from a gas stream in an orifice scrubber. This model takes into account Eulerian approach for particle dispersion, Lagrangian approach for droplet movement and particle-source-in-cell (PSI-CELL) model for calculating droplet concentration distribution. In order to compute fluid velocity profiles, the normal k− turbulent flow model with inclusion of body force due to drag force between fluid and droplets has been used. Experimental data of Taheri et al. [J. Air Pollut. Control Assoc. 23 (11) (1973) 963] have been used to test the results of the mathematical model. The results from the model are in good agreement with the experimental data. After validating the model the effect of operating parameters such as liquid to gas flow rate ratio, gas velocity at orifice opening, and particle diameter were obtained on the collection efficiency.  相似文献   

2.
A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements.  相似文献   

3.
In this study, a mathematical model has been developed to simulate the performance of a spray scrubber in an industrial ammonium nitrate plant. The model is based on the Lagrangian approach for the droplets movement and particle source in cell (PSI-CELL) model for calculating the droplet concentration distribution. Consequently, unlike former research, the emphasis is on the droplet dynamic behavior. In the current study, for approaching a realistic model, a droplet size distribution rather than average diameter, and also liquid film formation rather than uniform and constant droplet flow rate has been applied. Also, the Eulerian method has been used for the calculation of the particles removal efficiency and energy balance has been applied on the gas to estimate the droplet size distribution. In the experimental section, the concentration of particles and their size distribution in both inlet and outlet gas of the studied scrubber has been measured for the validation of the predicted particles collection efficiency. In addition, the temperature of the gas at inlet, outlet and in the middle of the tower has been measured for the confirmation of the predicted droplet size distribution in the tower. A good consistency between the model and data has been observed. After the model is validated, it is used to investigate the various variable profiles such as liquid film, total projected surface area of the droplets, velocity profile of the droplets and some of the other parameters in the spray scrubbers.  相似文献   

4.
In this study, a new approach for the auto-design of neural networks, based on a genetic algorithm (GA), has been used to predict collection efficiency in venturi scrubbers. The experimental input data, including particle diameter, throat gas velocity, liquid to gas flow rate ratio, throat hydraulic diameter, pressure drop across the venturi scrubber and collection efficiency as an output, have been used to create a GA-artificial neural network (ANN) model. The testing results from the model are in good agreement with the experimental data. Comparison of the results of the GA optimized ANN model with the results from the trial-and-error calibrated ANN model indicates that the GA-ANN model is more efficient. Finally, the effects of operating parameters such as liquid to gas flow rate ratio, throat gas velocity, and particle diameter on collection efficiency were determined.  相似文献   

5.
Nozzle arrangement in the nozzle spray system has a significant impact on the gas-droplet flow characteristics and the temperature distribution within the circulating fluidized bed flue gas desulphurization (CFB-FGD) tower, which is critical to the SO2 removal efficiency. The effects of spray direction, nozzle number and nozzle spray angle on gas-droplet distribution and temperature distribution inside the FGD tower are investigated with numerical simulation based on a Eulerian-Lagrangian mathematical model. An optimal nozzle arrangement scheme is proposed to improve the contact between gas and water droplets and the flue gas temperature distribution. Results show that upward spray direction is beneficial to the interaction between water droplets, improving gas-droplet flow characteristics and spray evaporation process, and water droplets number trapped by tower wall could be reduced in the water droplets evaporation. With the increase in nozzle number, it is conducive to the contact between flue gas and water droplets to increase the evaporation efficiency of water droplets, as well as the uniformity of temperature distribution inside the tower. With nozzle spray angle increases from 30° to 120°, flue gas velocity decreases, water droplets number trapped by the tower wall increases. The temperature distribution at different cross-section is the most uniform when the nozzle spray angle is 60°.  相似文献   

6.
Scrubbing by liquid sprayingis one of the most effective processes used for removal of fine particles and soluble gas pollutants (such as SO2, HCl, HF) from the flue gas. The primary function of venturi scrubber, which represents the first stage of the wet flue gas cleaning processes, such as in waste incineration plants, is to capture fine particles as well as remove HCl, HF or SO2 as a result of the decrease in the flue gas temperature before entering the absorption column. In this paper, a newly developed four-branch O-element is proposed as a replacement for venturi scrubber. By means of this device, sulphur dioxide (SO2) removal efficiency and pressure loss and temperature drop were experimentally calculated. The dependence of these variables on liquid–gas ratio was monitored. The simulated flue gas was prepared by the combustion of the carbon disulphide solution in toluene (1:1 vol.) in the presence of the flame in the reactor. Such prepared flue gas with temperature around 150 °C was processed in the laboratory-designed O-element scrubber. Water was used as an absorbent liquid. The maximal efficiency of SO2 removal achieved by this process was up to 70 %, which is far better in comparison with the commonly used venturi scrubbers. The pressure drop of our proposed newly designed wet scrubber is similar to that of the commonly used venturi scrubbers; nevertheless, the influence of the amount of the liquid on pressure drop is not so significant. In parallel, a mathematical model describing the mass transfer, enthalpy balance and pH change of the absorbing solution was also developed. Enthalpy balance was calculated by numerical iteration to determine the unknown outlet liquid temperature. Mass transfer calculation was used for the determination of complete Henry constant from all the subsequent SO2 absorption reactions.  相似文献   

7.
研究了300 MW煤粉锅炉系统选择性催化还原(selective catalytic reduction,SCR)、低低温电除尘器、海水脱硫、湿式电除尘器等超低排放设施在不同工况、不同煤种情况下的Hg迁移特性和脱除能力。结果表明:各工况下总汞排放浓度为1.16~2.90 μg/m3。最终排入大气中的汞主要以单质汞存在,还有少量氧化态汞,颗粒态汞被全部脱除;汞主要是在海水法烟气脱硫中被去除的,低低温电除尘器、海水脱硫、湿式电除尘器对总汞平均脱除率分别为25%、62%、37%;Hg2+占比是影响烟气中汞脱除效率的关键,气相中较高的Hg2+份额有利于在电除尘器和海水脱硫装置中获得较高的脱除效率;在该配备SCR脱硝、低低温电除尘器、海水脱硫、湿式电除尘器等超低排放设施的300 MW煤粉锅炉电厂中,总汞平均脱除率约为83%,能够实现较大程度的汞脱除。  相似文献   

8.
The absorption of SO2 and NH3 from the flue gas into NaOH and H2SO4 solutions, respectively has been studied using an industrial scale ejector–venturi scrubber. A statistical methodology is presented to characterise the performance of the scrubber by varying several factors such as gas pollutant concentration, air flowrate and absorbing solution flowrate. Some types of venturi tube constructions were assessed, including the use of a two-stage venturi tube.

The results showed a strong influence of the liquid scrubbing flowrate on pollutant removal efficiency. The initial pollutant concentration and the gas flowrate had a slight influence. The use of a two-stage venturi tube considerably improved the absorption efficiency, although it increased energy consumption.

The results of this study will be applicable to the optimal design of venturi-based absorbers for gaseous pollution control or chemical reactors.  相似文献   


9.
10.
ABSTRACT

The “nozzle scrubber” is a wet scrubber in which the scrubbing water is dispersed in the dust laden gas stream by means of one or more pneumatic nozzles. This scrubber is distinguished by an excellent collection efficiency for submicron dust at an unusually low energy and water consumption. No well-defined theory exists for this process. The collection efficiency in the “nozzle scrubber” depends primarily on turbulent diffusion respectively on the interaction of particles and droplets induced by turbulence, and not on inertial separation as in the case of the venturi scrubber. A light scattering device was used to measure the particle distributions. The experimental set-up was built up in a technical scale. The influence of operation parameters, especially water consumption, residence time, and pressurized air, on the grade efficiency has been demonstrated by their systematic variation. The contribution of turbulent diffusion to the collection efficiency has been confirmed.  相似文献   

11.
A droplet breakup model was proposed for simulating electrostatic spray in multiple physical fields. The static electricity, laminar flow and droplet atomization in COMSOL Multiphysics were coupled completely, and a two-dimensional simulation model was established. The process of droplet breakup and movement of electrostatic spray was revealed under the action of electric field, gravity field and air field. The electric field distribution under the needle ring electrode configuration was studied. The effects of different electrostatic voltage, needle ring distance and ring electrode diameter on droplet breakup characteristics, distribution uniformity and charge characteristics were analyzed. When the electrostatic voltage is -6 ~ -7 kV, the needle ring distance is 4 mm, and the ring electrode diameter is 30 mm, the electrostatic spray effect is better, and the density standard deviation is as low as 0.04528 /mm2, 0.0559 /mm2 and 0.06016 /mm2, respectively. Electrostatic spray has the characteristics of refining droplets, improving the uniformity of droplets distribution and controlling spray morphology, which provides a strong basis for the application of electrostatic spray in surface film preparation, dust removal, fuel injection and other practical engineering fields.  相似文献   

12.
Venturi scrubbers are widely utilized in gas cleaning. The cleansing elements in these scrubbers are droplets formed from the atomization of a liquid into a dust-laden gas. In industrial scrubbers, this liquid is injected through several orifices so that the cloud of droplets can be evenly distributed throughout the duct. The interaction between droplets when injected through many orifices, where opposite clouds of atomized liquid can reach each other, is to be expected. This work presents experimental measurements of droplet size measured in situ and the evidence of cloud interaction within a Venturi scrubber operating with multi-orifice jet injection. The influence of gas velocity, liquid flow rate and droplet size variation in the axial position after the point of the injection of the liquid were also evaluated for the different injection configurations. The experimental results showed that an increase in the liquid flow rate generated greater interaction between jets. The number of orifices had a significant influence on droplet size. In general, the increase in the velocity of the liquid jet and in the gas velocity favored the atomization process by reducing the size of the droplets.  相似文献   

13.
14.
A new type of aerosol collector employing a liquid at laboratory temperature for continuous sampling of atmospheric particles is described. The collector operates on the principle of a Venturi scrubber. Sampled air flows at high linear velocity through two Venturi nozzles "atomizing" the liquid to form two jets of a polydisperse aerosol of fine droplets situated against each other. Counterflow jets of droplets collide, and within this process, the aerosol particles are captured into dispersed liquid. Under optimum conditions (air flow rate of 5 L/min and water flow rate of 2 mL/min), aerosol particles down to 0.3 microm in diameter are quantitatively collected in the collector into deionized water while the collection efficiency of smaller particles decreases. There is very little loss of fine aerosol within the aerosol counterflow two-jets unit (ACTJU). Coupling of the aerosol collector with an annular diffusion denuder located upstream of the collector ensures an artifact-free sampling of atmospheric aerosols. Operation of the ACTJU in combination with on-line detection devices allows in situ automated analysis of water-soluble aerosol species (e.g., NO2-, NO3-)with high time resolution (as high as 1 s). Under the optimum conditions, the limit of detection for particulate nitrite and nitrate is 28 and 77 ng/m(3), respectively. The instrument is sufficiently rugged for its application at routine monitoring of aerosol composition in the real time.  相似文献   

15.
Ye D  Gao D  Yu G  Shen X  Gu F 《Journal of hazardous materials》2005,127(1-3):149-155
A plasma reactor with catalysts was used to treat exhaust gas from a gasoline engine in order to decrease particulate matter (PM) emissions. The effect of non-thermal plasma (NTP) of the dielectric discharges on the removal of PM from the exhaust gas was investigated experimentally. The removal efficiency of PM was based on the concentration difference in PM for particle diameters ranging from 0.3 to 5.0 microm as measured by a particle counter. Several factors affecting PM conversion, including the density of plasma energy, reaction temperature, flow rate of exhaust gas, were investigated in the experiment. The results indicate that PM removal efficiency ranged approximately from 25 to 57% and increased with increasing energy input in the reactor, reaction temperature and residence time of the exhaust gas in the reactor. Enhanced removal of the PM was achieved by filling the discharge gap of the reactor with Cu-ZSM-5 catalyst pellets. In addition, the removal of unburned hydrocarbons was studied. Finally, available approaches for PM conversion were analyzed involving the interactions between discharge and catalytic reactions.  相似文献   

16.
The “nozzle scrubber” is a wet scrubber in which the scrubbing water is dispersed in the dust laden gas stream by means of one or more pneumatic nozzles. This scrubber is distinguished by an excellent collection efficiency for submicron dust at an unusually low energy and water consumption. No well-defined theory exists for this process. The collection efficiency in the “nozzle scrubber” depends primarily on turbulent diffusion respectively on the interaction of particles and droplets induced by turbulence, and not on inertial separation as in the case of the venturi scrubber. A light scattering device was used to measure the particle distributions. The experimental set-up was built up in a technical scale. The influence of operation parameters, especially water consumption, residence time, and pressurized air, on the grade efficiency has been demonstrated by their systematic variation. The contribution of turbulent diffusion to the collection efficiency has been confirmed.  相似文献   

17.
A novel two-stage dynamic separator called high-gravity cyclone separator (HGCS) has been designed for gas–liquid separation. It is mainly composed of a cyclone chamber and rotary drum. In this study, its performance, including the separation efficiency and pressure drop, is experimentally investigated, and the effects of the operating conditions and drum parameters are evaluated. For droplets with a mean diameter of 7 μm, the results indicate that the optimal gas inlet velocity and high-gravity factor are 12 m/s and 59.4, respectively, and the separation efficiency reaches 98 %. The effect of liquid concentration is sensitive to the high-gravity factor. At a liquid concentration of 57 g/m3, the maximum efficiency will be 98.75 % when increasing the high-gravity factor to 85.6. Furthermore, a smaller radial height is preferable when the gas inlet velocity is greater than 12 m/s, and a better separation efficiency can be obtained by increasing the drum length to 190 mm. However, when the length is 235 mm, the efficiency will be poor because of the Kelvin–Helmholtz and Rayleigh–Taylor instabilities. Compared with the predominant roles of gas inlet velocity, drum length and radial height in pressure drop, the effects of liquid concentration and high-gravity factor are small.  相似文献   

18.
Loading of an electret filter changes the distribution of electrical field in the filter from its preloading condition, and, therefore, affects the filtration efficiency of the filter. Liquid droplets collected on electret filters cause degradation of the electrostatic enhancement of filtration efficiency because of charge neutralization and the formation of a dielectric coating over die charged fibers. In this study, calculations were made for the penetration of aerosol particles through a spun-type electret filter as a function of the particulate loading. An assumption was made that each charge collected neutralized one charge of opposite polarity on the fibers of the filter. It was also assumed that the electrostatic charges present on the particles followed the Boltzmann equilibrium charge distribution. The decrease in fiber charge and resulting increase in penetration were calculated as a function of time and of total particulate loading on the filter. The calculated penetrations were compared with experimental measurements of loading on a spun fiber electret filter challenged with monodisperse liquid droplets of bis-Ethylhexyl Sebacate with equilibrium charge distribution and with zero charge. The rate at which the penetration increased was found to be the same for particles with zero charge as for particles with equilibrium charge distribution. For 1 um diameter droplets with equilibrium charge the theory predicted complete discharge of the filter at a loading of around 200 g/m2. Experimentally, only about 0.3 g/m2 was required. This difference indicates the presence of additional mechanisms for the discharge of the fibers.  相似文献   

19.
Motion and evaporation of droplets significantly affect the semidry flue gas desulfurization efficiency and long-term operation. Both the flow field distribution and the heat and mass transfer in the spray towers are studied by numerical simulation, and the process of droplet motion and evaporation is analyzed in detail. Then, two indices, mixing variance and droplet mass-weighted life, are provided to quantify gas droplet mixing and the droplet group evaporation time. The simulation results show that the radial penetration distance of the droplets is longer with the diameter increase, and the appropriate swirl number improves the mixing between the flue gas and droplets. With the increase of droplet diameter and velocity, the droplet distribution in the tower is more widely, obtaining the optimum mixing variance. The droplet mass-weighted life is promoted linearly with the increase of average droplet diameter and the decrease of flue gas temperature. With flue gas temperature increase from 458 k to 488 K, the droplet mass-weighted life decreases linearly by 31%. In comparison, the initial droplet velocity and spray angle have a slight effect on the droplet mass-weighted life.  相似文献   

20.
In this article, the performance of a two-stage hybrid (spray-cum-bubble) column on the scrubbing of particulate-laden-SO2 using water and dilute NaOH is reported. The present system deals with a tapered section in order to achieve the bubble regime. On the other hand, a two-phase critical flow atomizer is used for generating finer drops with high degree of spray uniformity. Detailed experimentation revealed that SO2 removal was enhanced due to presence of particles (fly ash). Almost 100% SO2 removal was achieved in water scrubbing. The increase in the enhancement factor of SO2 absorption in alkaline scrubbing did not follow theoretical linear relationship with the concentration ratio after reaching a value that corresponded to the ∼100% SO2 removal efficiency. The presence of fly ash particles improved the removal efficiency of hybrid scrubber to about 11% within the range of variables studied. Unique empirical and semi-empirical correlations were developed for predicting the scrubbing performances of the stage-wise hybrid column in water and dilute NaOH respectively. Predicted data were in excellent agreement with the experimental values. The performance of the hybrid column was also compared with the existing systems and very encouraging results were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号