首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
秦严严  王昊  王炜 《中国公路学报》2018,31(11):147-156
LWR(Lighthill,Whitham and Richards,LWR)模型可推演交通流宏观状态演化过程,在智能网联环境下混有协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆混合交通流LWR模型的研究,可为该混合交通流的宏观动力学特性分析提供理论工具。应用加州伯克利PATH真车试验验证的CACC模型作为CACC车辆跟驰模型,采用智能驾驶人模型(Intelligent Driver Model,IDM)模拟驾驶人在智能网联环境中的"智能"驾驶特性。基于不同CACC车辆比例下的混合交通流基本图,证明混合交通流基本图的切线斜率为交通波在混合车队中传播的波速,建立混合交通流LWR模型的一般性解析框架,得到混有CACC车辆的混合交通流LWR模型。最后,针对LWR模型冲击波特性,在6组平衡态条件下进行数值仿真试验。研究结果表明:所建立的混合交通流LWR模型可较好地描述不同CACC车辆比例时冲击波在混合车队中的传播波速;冲击波波速理论值与仿真均值的相对误差基本控制在10%以内,当冲击波处于由正向波转变为反向波的过渡阶段时,相对误差较大,为19%~26%,但绝对误差仍然较小。研究结果一方面可为混有CACC车辆的交通流宏观状态演化提供理论参考,具有推动该混合交通流其他宏观模型研究进展的积极作用;另一方面,建立的混合交通流LWR模型解析框架能够适应CACC车辆与人工-网联车辆跟驰模型选取的多样性,同时可为其他类型混合交通流LWR模型的建立提供理论支撑。  相似文献   

2.
在人工驾驶车辆、自适应巡航控制(ACC)车辆和协同自适应巡航控制(CACC)车辆的行车行为特征分析的基础上,运用跟驰模型和换道模型分别构建人工驾驶车辆、ACC车辆及CACC车辆在下匝道分流区混合交通流仿真环境,解析CACC车辆占比对混合交通流安全性的影响。选取全速度差模型、ACC跟驰模型、CACC跟驰模型分别作为人工驾驶车辆、ACC车辆、CACC车辆的纵向跟驰模型,利用随意换道模型、强制换道模型分别构建下匝道分流主线段、远近端区的横向换道模型。基于碰撞时间(TTC)、暴露碰撞时间(TET)、整合碰撞时间(TIT)等参数构建交通流安全性评价指标。利用MATLAB进行数值模拟,仿真分析不同CACC车辆占比下的混合交通流安全性。结果表明:CACC车辆占比为40%~50%时,混合交通流安全性恶化最严重,TET和TIT分别增加约68%和89%,车辆速度离散系数为0.9以上;通过在下匝道分流区设置远端强制换道区(设置长度≤ 1 000 m),可有效降低混合交通流的追尾碰撞风险。   相似文献   

3.
针对协同自适应巡航控制(CACC)车辆市场普及过程中存在的CACC车辆、自适应巡航控制(ACC)车辆与人工驾驶汽车混合行驶的异质交通流,应用智能驾驶模型(IDM)和由加州大学伯克利分校PATH实验室实车验证的ACC模型、CACC模型分别作为人工车辆、ACC车辆和CACC车辆的跟驰模型,建立能够反映异质交通流中3种车型相互关系的解析表达。基于此,推导不同CACC车辆渗漏率p下的异质交通流基本图模型,并针对异质交通流基本图散点分布与基本路段通行能力,设计数值仿真试验。最后,针对ACC车辆和CACC车辆的期望车间时距进行参数敏感性分析。研究结果表明:建立的异质交通流解析表达与随机性仿真试验的误差小于1.5%,异质交通流基本图解析可取代基本路段通行能力的仿真试验,用于分析不同p时的异质交通流通行能力;ACC期望车间时距ta取值1.1 s时,交通流通行能力随着p的增加逐渐提升;当t_a=1.6 s,p低于30%时,异质交通流通行能力与传统人工车辆通行能力基本相当;当t_a=2.2 s,p低于40%时,异质交通流通行能力低于人工车辆通行能力;同时,CACC车辆期望车间时距tc越小,异质交通流通行能力越大;建立的异质交通流解析表达可为异质交通流其他特性的解析研究提供思路,异质交通流基本图解析结果,从通行能力的角度为ACC,CACC上层控制器设计提供期望车间时距取值的参考。  相似文献   

4.
自适应巡航(ACC)和协同式自适应巡航(CACC)等自动驾驶技术正逐渐进入市场,未来一段时间内道路交通流将由人工驾驶车辆与不同等级、不同形式的自动驾驶车辆混合构成。为分析ACC和CACC对交通流的影响,利用实测交通数据NGSim建立人工驾驶车辆跟驰模型,并在综合已有ACC和CACC模型的基础上,提出基于安全间距的自动驾驶跟驰行为模型,进而得出不同ACC,CACC车辆渗透率下交通流的基本图模型。研究结果表明:自动驾驶可以提升交通容量;与ACC车辆比例ra相比,CACC车辆比例rc对交通容量的影响更为显著;当rc>0.5时,饱和流量快速增加,当rc=1时,饱和流量约为纯人工驾驶时的2倍。进一步,通过仿真考察车辆在车队中的跟驰响应和交通流在瓶颈处的运行情况。研究结果表明:自动驾驶改善了交通流的动态特性,对存在跟驰关系的连续车流来说,自动驾驶使得后车可以更加及时地响应前车的行为,车流会在更短的时间内进入稳态;在交通瓶颈处,自动驾驶降低了拥堵程度,提高了阻塞发生的临界流量。总体来看,自动驾驶对交通流静态和动态性能均有所提升,特别是在协同式自动驾驶场景下,车辆行为更加协调一致,交通流表现出良好的抗扰性,进一步验证了车路协同对自动驾驶的意义。  相似文献   

5.
自动驾驶专用车道对混合交通流的作用与协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车流大小相关.为分析已存在自动驾驶专用车道场景下CACC车流在各车道上的分布情况对交通流的影响,利用已有的人工驾驶车辆(Human-driving Vehicle,HV)和CACC跟...  相似文献   

6.
针对CACC协同自适应巡航控制技术,探究其在车联网通信时延影响下,与驾驶员驾驶汽车共存而构成的混合队列系统的性能。从微观跟车行为角度,基于频域传递函数,推导通信时延下的CACC队列稳定最小跟车时距的理论表达式,并通过数值验证指出CACC队列稳定最小跟车时距随通信时延增大而增大的特性。从交通激波特性角度,针对无时延CACC、有时延CACC和时延过大而退化后的ACC自适应巡航3种情形,给定相同的跟车时距,进行不同渗透率下的大规模交通仿真实验,实验结果表明,在无时延和1 s时延这2种情形下,CACC在20%及以上的渗透率时均能显著降低交通扰动,削弱激波,性能差别不明显; 相比而言,退化后的ACC性能明显恶化。   相似文献   

7.
张涛  邹渊  张旭东  王文伟 《汽车工程》2020,42(2):250-256
为检测旁车道车辆驾驶员的并线意图,提升网联车辆巡航跟车的主动安全性,提出了一种基于NAR神经网络学习的迭代循环预测算法。NAR神经网络的训练样本由实际交通环境中的车辆并线数据获得,通过训练的网络预测未来一段时间内旁车的横向行驶轨迹,并根据划定的监控区域计算旁车的切入概率。同时,提出了一种考虑并线概率的跟车距离策略,并应用到网联车辆CACC系统中。结果表明,所提出的并线预测算法能精确计算出旁车的横向换道轨迹,所提出的跟车策略可提升车辆的跟车安全性。  相似文献   

8.
道路交叉口具有车辆冲突交织、碰撞风险加剧的交通安全复杂性的特点,而道路信号交叉口中的相序设计是制约降低车辆碰撞风险、提高交叉口安全性的主要瓶颈。文中针对上述问题,以道路交叉口车辆轨迹的不同冲突点和碰撞风险概率作为切入点,提出了不同相序下左转车与直行车不同驾驶行为的碰撞风险模型。根据运动学理论考虑车辆运行特性,运用条件概率的思想求出碰撞概率来表征车辆碰撞风险,从安全的本质出发提出了碰撞风险的表述方法,建立密度函数模型,从而建立基于概率计算的动态碰撞风险模型,通过VISSIM微观仿真软件仿真车辆的运行场景,利用仿真输出的运行数据计算风险值。研究结果表明,根据碰撞风险估计值变化规律可以确定不同相序下不同驾驶行为的碰撞风险预警阈值,而且能较好地反映实际交通安全状况,比较两种相序预警阈值的大小,还可以为信号交叉口相序设计提供定量依据。  相似文献   

9.
为研究人工驾驶车辆和智能网联车辆(CAVs)的混合运行对交通流产生的影响,以其基本图和稳定性为突破口研究提高异质交通流运行效率的关键技术与方法。选择全速度差模型(FVDM)作为人工驾驶车辆跟驰模型,将加州伯克利分校实车数据标定的协同自适应巡航控制(CACC)模型作为CAVs跟驰模型。建立了异质交通流基本图模型,研究了CACC车辆的混入对道路通行能力的影响;对比了不同人工驾驶模型对异质流通行能力产生的差异性。从大车-小车组成的传统异质交通流研究方法入手,利用跟驰模型建立人工-网联异质流的稳定性解析方法,并运用Matlab验证了不同CACC比例下的稳定性分析。结果表明:与人工驾驶交通流相比,CACC同质交通流的道路通行能力大约提升了95%;实验中选用不同人工驾驶模型对通行能力实验结果造成的差异不大。平衡态速度为15 m/s时,低比例CAVs(如低于20%)并不能改善交通流;当CAVs比例达到20%及以上时,异质流稳定性随着CAVs的比例增加逐渐呈现出稳定趋势;当CAVs比例达到70%以上时,异质流基本稳定。   相似文献   

10.
本文中针对单向通信拓扑的非线性车辆队列协同式自适应巡航(CACC)控制问题,提出一种保证队列稳定且满足队列各车跟随性、安全性和乘员舒适性的分布式模型预测控制(DMPC)策略。首先建立了车辆队列的动力学模型和通信拓扑结构模型,并基于队列系统的多项优化性能设计代价函数和系统约束,使队列中每一辆跟随车基于其接收到的有限信息求解一个开环局部最优问题,计算出当前时刻的最优控制量作为输入并不断重复这个过程,达到滚动优化的目的,实现车辆队列的协同式自适应巡航控制。其次通过CACC系统局部代价函数之和构建Lyapunov候选函数,证明了车辆队列系统渐进稳定性的充分条件。最后通过CarSim和Simulink联合仿真,分析了算法在理想状态下对不同形式单向通信拓扑车辆队列的控制性能;通过实车试验,验证了算法在实车条件下感知层存在抖动、底层控制存在延迟和误差时的控制性能。仿真和实车试验的结果表明,本文提出的控制策略能使队列车辆实现各项优化性能,同时对外部干扰有较好的鲁棒性。  相似文献   

11.
信号交叉口是影响交通系统运行安全和效率的关键。在国家新基建战略的提出以及车路协同技术不断发展的环境下,合理设置网联自动驾驶车辆(Connected and Autonomous Vehicle,CAV)专用进口道,对信号交叉口进口道处不同网联类型的车辆进行科学的交通组织,能够提高交叉口的通行能力,降低行车延误,促进城市交通系统效率与安全的双提升。建立协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆跟驰模型和GM (General Motor)模型分别描述混行环境下网联车辆与非网联车的跟驰行为,以提高进口道通行能力、降低延误和油耗为优化目标,采取敏感度分析方法,提出不同CAV比例、进口道车道数、交通量和信号配时方案组合情况下CAV专用进口道的动态设置条件,适用于不同交通状况的信号交叉口,具有较强的普适性。数值仿真结果表明:采用该方法设置CAV专用进口道能够提高混行信号交叉口的通行能力、降低延误和车均油耗;在实际应用时,可视交叉口类型和交通智能化程度灵活选取CAV专用进口道设置方式,为混行交通流环境下交叉口进口道的交通组织优化提供理论依据和模型支持,对车路协同系统的相关研究具有参考意义。  相似文献   

12.
蒋贤才  裴玉龙  刘勇 《公路交通科技》2008,25(3):115-118,133
在冰雪路面环境下,调查数据表明车辆的运行特征发生了显著变化,主要表现在车速、加速度下降了30%,饱和流率下降了16%,起动、制动损失时间上升了27%。基于HCM、Webster信号控制理论与不同路面环境下的车流运行特征值,对信号控制中周期时长、绿信比、相位差以及黄灯时间、红灯时间的合理取值问题进行了分析,得到了冰雪路面环境下信号控制参数取值的影响因素与变化范围。仿真研究表明:在冰雪路面环境下采用非冰雪路面环境下的信号控制方案会增加车辆延误与排队长度,加剧交叉口的拥挤程度。因此,交通信号控制系统应针对不同的路面环境分别制定与路面环境相适应的信号控制方案。  相似文献   

13.
基于动态重复博弈的车辆换道模型   总被引:1,自引:0,他引:1  
在对车辆换道行为分析的基础上,提出了一种应用动态重复博弈原理建立车辆换道模型的方法,对每个阶段车辆的博弈过程以及车辆行为策略进行了描述,并利用速度期望的值作为车辆不同行为决策概率,在此基础上,考虑影响车辆速度期望的各个因素来对车辆速度期望的获得进行了分析。通过对不同交通流条件下实际调查的车辆换道次数与仿真值进行比较,表明了所提出模型的有效性。  相似文献   

14.
基于国内外学者对车辆换道微观行为的建模和仿真理论,提出了路面破损约束条件下道路交通车辆换道行为的建模方法。首先,进行了车辆因路面破损而换道的机理分析,计算了车辆不同情况下换道的常概率区和亚概率区;其次,提出了路面破损影响下换道的路径选择效益模型;最后,基于社会力模型思想,建立了车辆可选择换道属性的离散模型。  相似文献   

15.
针对自动驾驶车辆,文章在交叉路口环境下提出了一种改进的快速搜索随机树(RRT*)路径规划算法。首先,对自动驾驶车辆的驾驶行为环境予以描述;其次,针对原始RRT*算法提出改进的目标偏向策略予以改善;进一步,对原始RRT*算法在交叉路口无效采样的问题,提出一种概率采样策略。基于Matlab/Simulink联合仿真平台构建相应环境使进行车辆直行驾驶,所规划路径长度为100.35m,仿真时长为5.71s。  相似文献   

16.
基于部件的工作原理或试验结果,在Matlab/Simulink环境下,建立了某型机械传动车辆动力传动系统的模块化动态仿真模型,采用该仿真模型模拟了在不同驾驶模式下,车辆起步及连续加速过程中的动力性和燃油经济性。  相似文献   

17.
为有效刻画未来智能网联环境下车辆在换道过程中面临的驾驶风险,保证车辆执行更加安全的换道决策,建立基于安全势场理论的车辆换道模型。首先针对车辆换道过程中所遇到的驾驶风险进行评估,利用势场理论给出车辆行驶过程中不同运动状态下安全势场的空间分布。其次根据换道过程中相关车辆不同安全势场分布情况计算出换道结束时的车间临界距离,相比于传统的车间临界距离计算模型,提出方法能够动态刻画出车辆在不同速度、加速度条件下临界距离的变化趋势,并且能够根据车辆不同的运动状态,动态表达出车辆间临界距离的变化。在此基础上,根据智能网联环境下车辆各类运动状态能够被实时感知的特点,总结出车辆各类运动状态下需要的换道安全临界时间,最终建立基于安全势场理论的最小安全距离换道模型。最后,对模型进行数值仿真分析,仿真结果表明:车辆换道所需要的最小纵向安全距离与换道车辆以及其周围车辆的运动状态有着直接关系。在今后趋于成熟的智能网联环境下,该模型可以进一步进行扩展,利用安全势场的分布情况,对车辆换道过程进行动态实时干涉,能够为今后智能网联环境下车辆协同换道、车辆自动驾驶以及车辆群体优化控制等相关研究提供一定的理论支撑。  相似文献   

18.
为分析高速公路隧道与互通出口小净距路段在不同交通流状况下的车辆驶出概率,提出了基于交通仿真的安全换道概率模型。首先,采用VISSIM标定仿真模型并进行正交试验,获取小净距路段在不同净距长度、交通量、驶出比例、大型车比例下的交通数据,在此基础上确定瞬时交通流密度及相应车流平均速度的计算方法,构建相应的分布模型,通过K均值聚类算法研究不同速度下的瞬时交通流密度大小和出现概率;同时引入可靠度方法并利用微分法来构建车辆安全换道概率模型,综合考虑车速、车流密度、目标车道临界可插入间隙等因素的不确定性,应用蒙特卡罗仿真法搭建求解概率模型的算法,并通过MATLAB对模型进行求解;针对分流车初始位置的不同,分别得到了不同交通量、大型车比例、净距长度下的换道驶出成功率,进而研究不同交通流状况组合下的净距长度。结果表明:交通量、大型车比例、净距长度对净距路段内侧车道车辆换道驶出成功率有显著性影响,研究结果可为规范的进一步完善提供参考。  相似文献   

19.
汽车AFS前照灯转角动力学建模及仿真分析   总被引:2,自引:0,他引:2  
结合线性2自由度车辆动力学模型建立了车辆转向时的AFS数学模型.在Matlab/Simulink中建立了该数学模型的系统仿真模块,得到3组不同变量(不同车速、前轮转角和道路转弯半径)下的前照灯转角变化曲线.仿真结果表明,车辆动力学因素在汽车转向过程中对前照灯转角有一定影响;基于车辆动力学的AFS能够有效提高驾驶员可视范围,使车辆驾驶更加安全可靠.  相似文献   

20.
基于电压控制的混合动力履带车辆控制策略研究   总被引:1,自引:0,他引:1  
结合车辆结构形式和DC—DC变换器控制方法,在功率跟踪控制策略基础上提出一种基于电压控制的混合动力履带车辆控制策略。并在Simulink/Stateflow环境下对提出的控制策略进行建模,将控制逻辑与整车驱动系统模型联合,得到以加速踏板、制动踏板和转向盘为输入,包含控制策略的混合动力履带车辆模型。在不同工况下进行仿真,仿真结果表明该控制策略可行并可使车辆具有良好的加速性能和转向性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号