首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reducing the energy consumption of sensor nodes and prolonging the life of the network is the central topic in the research of wireless sensor network (WSN) protocol. The low-energy adaptive clustering hierarchy (LEACH) is one of the hierarchical routing protocols designed for communication in WSNs. LEACH is clustering based protocol that utilizes randomized rotation of local cluster-heads to evenly distribute the energy load among the sensors in the network. But LEACH is based on the assumption that each sensor nodes contain equal amount of energy which is not valid in real scenarios. A developed routing protocol named as DL-LEACH is proposed. The DL-LEACH protocol cluster head election considers residual energy of nodes, distance from node to the base station and neighbor nodes, which makes cluster head election reasonable and node energy consumption balance. The simulation results of proposed protocols are compared for its network life time in MATLAB with LEACH protocol. The DL-LEACH is prolong the network life cycle by 75 % than LEACH.  相似文献   

2.
In wireless sensor network, a large number of sensor nodes are distributed to cover a certain area. Sensor node is little in size with restricted processing power, memory, and limited battery life. Because of restricted battery power, wireless sensor network needs to broaden the system lifetime by reducing the energy consumption. A clustering‐based protocols adapt the use of energy by giving a balance to all nodes to become a cluster head. In this paper, we concentrate on a recent hierarchical routing protocols, which are depending on LEACH protocol to enhance its performance and increase the lifetime of wireless sensor network. So our enhanced protocol called Node Ranked–LEACH is proposed. Our proposed protocol improves the total network lifetime based on node rank algorithm. Node rank algorithm depends on both path cost and number of links between nodes to select the cluster head of each cluster. This enhancement reflects the real weight of specific node to success and can be represented as a cluster head. The proposed algorithm overcomes the random process selection, which leads to unexpected fail for some cluster heads in other LEACH versions, and it gives a good performance in the network lifetime and energy consumption comparing with previous version of LEACH protocols.  相似文献   

3.
A wireless sensor network (WSN) is composed of sensor nodes whose energy is battery-powered. Therefore, the energy is limited. This paper aims to improve the energy efficiency of sensor nodes in order to extend the lifetime of WSNs. In this paper, we propose four new hierarchical clustering topology architectures: random cluster head and sub-cluster head (RCHSCH), random cluster head and max energy sub-cluster head (RCHMESCH), random cluster head and sub-cluster head with sleep mode (RCHSCHSM) and random cluster head and max energy sub-cluster head with sleep mode (RCHMESCHSM). Our proposed architectures involve three-layers and are based on low-energy adaptive clustering hierarchy (LEACH) architecture. Notably, RCHSCH can improve upon cluster head death within the LEACH architecture. In addition, we develop a sleep mode for sensor nodes based on correlations among sensor data within sub-clusters in RCHSCHSM. Thus, we can reduce the energy consumption of the sensor node and increase energy efficiency. From the simulation results, our proposed RCHSCH, RCHMESCH, RCHSCHSM and RCHMESCHSM architectures perform better than the LEACH architecture in terms of initial node death, the number of nodes alive and total residual energy. Furthermore, we find the performance of RCHMESCHSM architecture to be optimal in the set of all available architectures.  相似文献   

4.
通常的无线传感器分簇网络存在节点负载不均衡的问题。为均衡各节点能量消耗,延长网络生存周期,将K均值算法与遗传算法相结合,提出一种负载均衡的无线传感器网络路由算法,算法利用遗传算法的全局寻优能力以克服传统K均值算法的局部性和对初始中心的敏感性,实现了传感器网络节点自适应成簇与各节点负载均衡。仿真实验表明,该算法显著延长了网络寿命,相对于其他分簇路由算法,其网络生存时间延长了约43%。  相似文献   

5.
Optimized routing (from source to sink) in wireless sensor networks (WSN) constitutes one of the key design issues in prolonging the lifetime of battery‐limited sensor nodes. In this paper, we explore this optimization problem by considering different cost functions such as distance, remaining battery power, and link usage in selecting the next hop node among multiple candidates. Optimized selection is carried out through fuzzy inference system (FIS). Two differing algorithms are presented, namely optimized forwarding by fuzzy inference systems (OFFIS), and two‐layer OFFIS (2L‐OFFIS), that have been developed for flat and hierarchical networks, respectively. The proposed algorithms are compared with popular routing protocols that are considered as the closest counterparts such as minimum transmit energy (MTE) and low energy adaptive clustering hierarchy (LEACH). Simulation results demonstrate the superiority of the proposed algorithms in extending the WSN lifetime. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Non‐uniform energy consumption during operation of a cluster‐based routing protocol for large‐scale wireless sensor networks (WSN) is major area of concern. Unbalanced energy consumption in the wireless network results in early node death and reduces the network lifetime. This is because nodes near the sink are overloaded in terms of data traffic compared with the far away nodes resulting in node deaths. In this work, a novel residual energy–based distributed clustering and routing (REDCR) protocol has been proposed, which allows multi‐hop communication based on cuckoo‐search (CS) algorithm and low‐energy adaptive‐clustering–hierarchy (LEACH) protocol. LEACH protocol allows choice of possible cluster heads by rotation at every round of data transmission by a newly developed objective function based on residual energy of the nodes. The information about the location and energy of the nodes is forwarded to the sink node where CS algorithm is implemented to choose optimal number of cluster heads and their positions in the network. This approach helps in uniform distribution of the cluster heads throughout the network and enhances the network stability. Several case studies have been performed by varying the position of the base stations and by changing the number of nodes in the area of application. The proposed REDCR protocol shows significant improvement by an average of 15% for network throughput, 25% for network scalability, 30% for network stability, 33% for residual energy conservation, and 60% for network lifetime proving this approach to be more acceptable one in near future.  相似文献   

7.
无线传感器网络(Wireless Sensor Networks,WSN)的路由协议是无线传感器网络领域中的一个研究热点.针对LEACH协议的不足,提出一种基于自适应t分布改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)的改进LEACH协议(LEACH?ISSA),以解决...  相似文献   

8.
通常的无线传感器分簇网络存在节点负载不均衡的问题。为均衡各节点能量消耗,延长网络生存周期,将K均值算法与遗传算法相结合,提出一种负载均衡的无线传感器网络路由算法,算法利用遗传算法的全局寻优能力以克服传统K均值算法的局部性和对初始中心的敏感性,实现了传感器网络节点自适应成簇与各节点负载均衡。仿真实验表明,该算法显著延长了网络寿命,相对于其他分簇路由算法,其网络生存时间延长了约43%。  相似文献   

9.
Sensor networks comprise of sensor nodes with limited battery power that are deployed at different geographical locations to monitor physical events. Information gathering is a typical but an important operation in many applications of wireless sensor networks (WSNs). It is necessary to operate the sensor network for longer period of time in an energy efficient manner for gathering information. One of the popular WSN protocol, named low energy adaptive clustering hierarchy (LEACH) and its variants, aim to prolong the network lifetime using energy efficient clustering approach. These protocols increase the network lifetime at the expense of reduced stability period (the time span before the first node dies). The reduction in stability period is because of the high energy variance of nodes. Stability period is an essential aspect to preserve coverage properties of the network. Higher is the stability period, more reliable is the network. Higher energy variance of nodes leads to load unbalancing among nodes and therefore lowers the stability period. Hence, it is perpetually attractive to design clustering algorithms that provides higher stability, lower energy variance and are energy efficient. In this paper to overcome the shortcomings of existing clustering protocols, a protocol named stable energy efficient clustering protocol is proposed. It balances the load among nodes using energy-aware heuristics and hence ensures higher stability period. The results demonstrate that the proposed protocol significantly outperforms LEACH and its variants in terms of energy variance and stability period.  相似文献   

10.
Energy is an extremely critical resource for battery‐powered wireless sensor networks (WSNs), thus making energy‐efficient protocol design a key challenging problem. However, uneven energy consumption is an inherent problem in WSNs caused by multi‐hop routing and many‐to‐one traffic pattern among sensors. In this paper, we therefore propose a new clustering method called fuzzy chessboard clustering (FFC), which is capable to overcome the bottleneck problem and addressing the uneven energy consumption problem in heterogeneous WSNs. We also propose an energy‐efficient routing method called artificial bee colony routing method (ABCRM) to find the optimal routing path for the heterogeneous WSNs. ABCRM seeks to investigate the problems of balancing energy consumption and maximization of network lifetime. To demonstrate the effectiveness of FCC‐ABCRM in terms of lessening end‐to‐end delay, balancing energy consumption, and maximization of heterogeneous network lifetime, we compare our method with three approaches namely, chessboard clustering approach, PEGASIS, and LEACH. Simulation results show that the network lifetime achieved by FCC‐ABCRM could be increased by nearly 25%, 45%, and 60% more than that obtained by chessboard clustering, PEGASIS, and LEACH, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Optimization of energy consumption is major concern for the design and planning of wireless sensor networks (WSNs). Recent research has demonstrated that organizing nodes in clusters has higher energy efficiency. LEACH is the most popular routing protocol for cluster-based in WSNs, and FCM algorithm is used for the optimum number of the clusters and their location. Aiming at the shortcomings of LEACH and FCM-LEACH, which including inaccurate cluster centers, unreasonable clustering and sole data transmission mode. This paper proposes a new energy efficient routing algorithm (NF-LEACH). In the new algorithm, There are many factors have considered to prolong the network life cycle that they are the degree of membership, residual energy, base station distance and data transmission mode. Finally, the comparison among LEACH, FCM-LEACH, and NF-LEACH has been done. The results show that the NF-LEACH has the longest lifetime and the most evenly distributed amongst three algorithms.  相似文献   

12.
Due to low cost, ease of implementation and flexibility of wireless sensor networks (WSNs), WSNs are considered to be an essential technology to support the smart grid (SG) application. The prime concern is to increase the lifetime in order to find the active sensor node and thereby to find once the sensor node (SN) dies in any region. For this reason, an energy-efficient Dynamic Source Routing (DSR) protocol needs to provide the right stability region with a prolonged network lifetime. This work is an effort to extend the network's existence by finding and correcting the considerable energy leveraging behaviors of WSN. We build a comprehensive model based on real measures of SG path loss for different conditions by using the characteristics of WSN nodes and channel characteristics. This method also establishes a hierarchical network structure of balanced clusters and an energy-harvesting SN. The cluster heads (CHs) are chosen by these SN using a low overhead passive clustering strategy. The cluster formation method is focused on the use of passive clustering of the particle swarm optimization (PSO). For the sake of eliminating delayed output in the WSN, energy competent dynamic source routing protocol (EC-DSR) is used. Chicken swarm optimization (CSO) in which optimum cluster path calculation shall be done where distance and residual energy should be regarded as limitation. Finally, the results are carried out with regard to the packet distribution ratio, throughput, overhead management, and average end-to-end delay to demonstrate the efficiency of the proposed system.  相似文献   

13.
一种无线传感器网络分簇路由算法研究   总被引:2,自引:1,他引:1  
刘琼  成运 《现代电子技术》2010,33(10):162-164,174
在分析LEACH协议的基础上提出一种基于能量和距离的多跳路由算法(CAED)。由基站依据节点剩余能量和簇头与基站的距离分别选出二层簇头,簇内节点利用单跳和多跳模式与簇头进行通信。仿真实验表明,新算法有效地平衡了节点的能量消耗,并显著地延长了网络的生命周期。  相似文献   

14.
Internet of Things (IoT) has got significant popularity among the researchers' community as they have been applied in numerous application domains. Most of the IoT applications are implemented with the help of wireless sensor networks (WSNs). These WSNs use different sensor nodes with a limited battery power supply. Hence, the energy of the sensor node is considered as one of the primary constraints of WSN. Besides, data communication in WSN dissipates more energy than processing the data. In most WSNs applications, the sensed data generated from the same location sensor nodes are identical or time-series/periodical data. This redundant data transmission leads to more energy consumption. To reduce the energy consumption, a data reduction strategy using neural adaptation phenomenon (DR-NAP) has been proposed to decrease the communication energy in routing data to the BS in WSN. The neural adaptation phenomenon has been utilized for designing a simple data reduction scheme to decrease the amount of data transmitted. In this way, the sensor node energy is saved and the lifetime of the network is enhanced. The proposed approach has been implanted in the existing gravitational search algorithm (GSA)-based clustered routing for WSN. The sensed data are transmitted to CH and BS using DR-NAP. Real sensor data from the Intel Berkeley Research lab have been used for conducting the experiments. The experiment results show 47.82% and 51.96% of improvement in network lifetime when compared with GSA-based clustered routing and clustering scheme using Canada Geese Migration Principle (CS-CGMP) for routing, respectively.  相似文献   

15.
The problems related to energy consumption and improvement of the network lifetime of WSN (wireless sensor network) have been considered. The base station (BS) location is the main concern in WSN. BSs are fixed, yet, they have the ability to move in some situations to collect the information from sensor nodes (SNs). Recently, introducing mobile sinks to WSNs has been proved to be an efficient way to extend the lifespan of the network. This paper proposes the assimilation of the fuzzy clustering approach and the Elephant Herding Optimization (EHO)‐Greedy algorithm for efficient routing in WSN. This work considers the separate sink nodes of a fixed sink and movable sink to decrease the utilization of energy. A fixed node is deployed randomly across the network, and the movable sink node moves to different locations across the network for collecting the data. Initially, the number of nodes is formed into the multiple clusters using the enhanced expectation maximization algorithm. After that, the cluster head (CH) selection done through a fuzzy approach by taking the account of three factors of residual energy, node centrality, and neighborhood overlap. A suitable collection of CH can extremely reduce the utilization of energy and also enhancing the lifespan. Finally, the routing protocol of the hybrid EHO‐Greedy algorithm is used for efficient data transmission. Simulation results display that the proposed technique is better to other existing approaches in regard to energy utilization and the system lifetime.  相似文献   

16.
Clustering has been proven to be one of the most efficient techniques for saving energy of wireless sensor networks (WSNs). However, in a hierarchical cluster based WSN, cluster heads (CHs) consume more energy due to extra overload for receiving and aggregating the data from their member sensor nodes and transmitting the aggregated data to the base station. Therefore, the proper selection of CHs plays vital role to conserve the energy of sensor nodes for prolonging the lifetime of WSNs. In this paper, we propose an energy efficient cluster head selection algorithm which is based on particle swarm optimization (PSO) called PSO-ECHS. The algorithm is developed with an efficient scheme of particle encoding and fitness function. For the energy efficiency of the proposed PSO approach, we consider various parameters such as intra-cluster distance, sink distance and residual energy of sensor nodes. We also present cluster formation in which non-cluster head sensor nodes join their CHs based on derived weight function. The algorithm is tested extensively on various scenarios of WSNs, varying number of sensor nodes and the CHs. The results are compared with some existing algorithms to demonstrate the superiority of the proposed algorithm.  相似文献   

17.
Routing protocol plays a role of great importance in the performance of wireless sensor networks (WSNs). A centralized balance clustering routing protocol based on location is proposed for WSN with random distribution in this paper. In order to keep clustering balanced through the whole lifetime of the network and adapt to the non-uniform distribution of sensor nodes, we design a systemic algorithm for clustering. First, the algorithm determines the cluster number according to condition of the network, and adjusts the hexagonal clustering results to balance the number of nodes of each cluster. Second, it selects cluster heads in each cluster base on the energy and distribution of nodes, and optimizes the clustering results to minimize energy consumption. Finally, it allocates suitable time slots for transmission to avoid collision. Simulation results demonstrate that the proposed protocol can balance the energy consumption and improve the network throughput and lifetime significantly.  相似文献   

18.

The wireless sensor network (WSN) is always known for its limited-energy issues and finding a good solution for energy minimization in WSNs is still a concern for researchers. Implementing mobility to the sink node is used widely for energy conservation or minimization in WSNs which reduces the distance between sink and communicating nodes. In this paper, with the intention to conserve energy from the sensor nodes, we designed a clustering based routing protocol implementing a mobile sink called ‘two dimensional motion of sink node (TDMS)’. In TDMS, each normal sensor node collects data and send it to their respective leader node called cluster head (CH). The sink moves in the two dimensional direction to collect final data from all CH nodes, particularly it moves in the direction to that CH which has the minimum remaining energy. The proposed protocol is validated through rigorous simulation using MATLAB and comparisons have been made with WSN’s existing static sink and mobile sink routing protocols over two different geographical square dimensions of the network. Here, we found that TDMS model gives the optimal result on energy dissipation per round and increased network lifetime.

  相似文献   

19.
Sensor node energy conservation is the primary design parameters in wireless sensor networks (WSNs). Energy efficiency in sensor networks directly prolongs the network lifetime. In the process of route discovery, each node cooperates to forward the data to the base station using multi‐hop routing. But, the nodes nearer to the base station are loaded more than the other nodes that lead to network portioning, packet loss and delay as a result nodes may completely loss its energy during the routing process. To rectify these issues, path establishment considers optimized substance particle selection, load distribution, and an efficient slot allocation scheme for data transmission between the sensor nodes in this paper. The selection of forwarders and conscious multi‐hop path is selected based on the route cost value that is derived directly by taking energy, node degree and distance as crucial metrics. Load distribution based slot allocation method ensures the balance of data traffic and residual energy of the node in areal‐time environment. The proposed LSAPSP simulation results show that our algorithm not only can balance the real‐time environment load and increase the network lifetime but also meet the needs of packet loss and delay.  相似文献   

20.
基于无线传感器网络LEACH协议的仿真分析研究   总被引:3,自引:0,他引:3  
无线传感器网络(WSN)路由协议中的LEACH协议作为最早提出的层次型协议,得到了广泛的应用与关注。为了达到对比分析低功耗自适应集簇分层型LEACH协议、平面型MTE协议和改进后的LEACH-C协议的目的,利用NS 2网络仿真平台做了仿真实验,分析研究了仿真数据。结果表明以LEACH协议为基础改进后的LEACH-C协议在给定能量条件下,经过一段时间的运行,剩余节点数最多、能耗最小、数据收发量最大,能有效延长网络使用寿命,具备广泛的实际应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号