首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
李鑫  陈永平  吴嘉峰  施明恒 《化工学报》2009,60(5):1080-1086
对水力直径90.6 μm、宽深比9.668的矩形硅微通道中的流动冷凝过程进行了可视化研究。研究发现,宽矩形硅微通道中的冷凝,沿程主要有珠状-环状复合流、喷射流和弹状-泡状流等流型。在珠状-环状复合流区,冷凝液膜可覆盖通道竖直侧壁,而在通道长边上,仍然为珠状凝结。喷射流位置随着入口蒸气Reynolds数的增大而延后,通道截面形状对流动冷凝不稳定性也存在很大影响。喷射流之后为弹状-泡状流,弹状气泡沿程逐渐缩短,并在表面张力的作用下收缩成圆球形气泡。冷凝通道的平均传热系数将随着入口蒸气Reynolds数的增大而增大。  相似文献   

2.
吴春旭  李俊明 《化工学报》2018,69(7):2851-2859
基于VOF模型,模拟了R32在水力直径为50 μm的方形微通道内流动凝结时的气液两相流型演进过程,模拟涉及的流型包括环状流、喷射流、泡状流和收缩泡状流。模拟结果显示,由于沿通道周向气液界面存在曲率差异,凝结液内部存在表面张力导致的横向压力梯度,驱使凝结液流向通道壁面拐角处,减薄通道壁面中部液膜厚度。基于势能最小原理,解释了表面张力与界面黏性力主导的喷射流形成机理。小质量流率时,喷射流诱发环状流上游气液界面波动,界面波动在界面黏性力的作用下逐渐生长。这与大质量流率时,流向下游并逐渐生长的界面波动导致流型转换的机理不同。  相似文献   

3.
基于VOF模型,模拟了R32在水力直径为50μm的方形微通道内流动凝结时的气液两相流型演进过程,模拟涉及的流型包括环状流、喷射流、泡状流和收缩泡状流。模拟结果显示,由于沿通道周向气液界面存在曲率差异,凝结液内部存在表面张力导致的横向压力梯度,驱使凝结液流向通道壁面拐角处,减薄通道壁面中部液膜厚度。基于势能最小原理,解释了表面张力与界面黏性力主导的喷射流形成机理。小质量流率时,喷射流诱发环状流上游气液界面波动,界面波动在界面黏性力的作用下逐渐生长。这与大质量流率时,流向下游并逐渐生长的界面波动导致流型转换的机理不同。  相似文献   

4.
微通道内气液两相流动规律是影响微通道换热器换热系数和流场温度均匀性的主要因素。以N2和H2O为工质,对间断、并联矩形微通道换热器内气液两相流型的起始、发展、稳定过程的演化以及并联通道内流量分配不均匀特性进行了数值模拟研究。结果表明,不同的进口Re对微通道内流型的演变过程和流动周期有重要影响,当进口Re为450时,气相工质在均流腔内以离散的散团状形态脉动扩散至微通道中,并联通道内气相工质从弹状流型态逐渐转变为泡状流型态;当进口Re增至为1600时,气相工质在均流腔内以较连续的椭圆状型态扩散至微通道中,并联通道内气相工质从环状流型态逐渐转变为泡状流型态。通道结构还将影响并联通道间的流量分配的均匀性,间断微腔的存在使微通道内工质质量流量分布均匀性提升38.7%,通过研究通道内压力分布规律,发现通道内静压的分布不均匀是导致两相工质从均流腔进入微通道时发生不均匀分配的重要原因。  相似文献   

5.
为了研究竖直窄矩形通道内环状流的流动传热特性,建立了窄矩形通道内环状流的数学物理模型,并进行了实验验证。通过数值求解环状流的数学物理模型得到了环状流区域的压降梯度、沸腾传热系数和液膜内的速度分布。结果表明窄矩形通道内的环状流模型能够很好地预测环状流区域的压降梯度和沸腾传热系数,而且环状流液膜内速度在法向的分布是非线性的,在层流边界层区速度梯度较大。热通量和窄矩形通道的尺寸对液膜的流速有很大影响,随热通量的增加和窄矩形通道尺寸的减小液膜的流速逐渐增加,然而质量流速对液膜流速的影响较小,而且随质量流速的增加液膜的速度逐渐减小。  相似文献   

6.
《化工机械》2015,(4):498-503
以空气-水为工质,在不同曲率比下利用高速摄影仪对正方形截面为0.8mm×0.8mm的弯曲微通道进行了气液两相流流动特性实验研究,获得了典型流型毛细泡状流、弹状流、间歇流和环状流,发现了非典型毛细泡状流和少见的波状分层流,并将实验结果与相关文献进行对比,为合理设计微型换热器和微化工混合器的气液流动分布结构、保证微通道内优异的传热传质特性提供理论指导和技术支撑。  相似文献   

7.
对水平放置的矩形截面螺旋通道内空气-水两相流动进行了实验研究。通过高速摄影仪对其内部的流动进行可视化研究,实验中观察到了柱塞状流、弹状流、分散泡状流、环状流;实验测量了通道内两相流动摩擦压降,并与Chisholm模型下的预测值进行比较,实验结果表明:流型很大程度上制约着矩形截面螺旋通道内两相摩擦阻力,采用分流型计算矩形截面螺旋通道摩擦压降的方法可以有效提高预测精度;Chisholm模型适用于间歇流和环状流状态下的压降预测,对于分散泡状流状态下的压降预测偏差较大。  相似文献   

8.
侯璟鑫  钱刚  周兴贵 《化工学报》2013,64(6):1976-1982
微通道的几何参数对于气泡或者液滴在其中的形成过程有着显著的影响。采用流体体积法(VOF法)研究了不同气体入口角度以及不同通道截面宽高比对微通道内气液两相流流动状况的影响。在所研究的操作范围内,各个微通道内的两相流流型均为泰勒流,并且在大多数情况下气泡长度分布均匀。在通道截面宽高比为0.5~2条件下,60°的气体入口角度有利于产生较短的气泡;如果通道截面宽高比达到4或8时,45°的气体入口角度更有利于形成较短的气泡。此外,随着通道截面宽高比的增大,通道内气泡的量纲1长度也随之增大,气泡长度分布的均匀性也逐渐变差。当通道截面宽高比增大到8时气泡长度分布变得很不均匀。  相似文献   

9.
林清宇  吴佩霖  冯振飞  艾鑫 《化工科技》2020,28(1):41-46,51
为探究不同操作参数及结构下矩形截面螺旋细通道内气液两相流的液相分布及压降特性,建立了光滑螺旋通道及内置矩形涡发生器的螺旋通道2种模型,在进口速度u_(in)=0.22~0.32 m/s,进口含气率α=0.55~0.59的条件下,以空气-水两相流为工质进行了数值模拟。结果表明,在研究的范围内通道内液体受离心力的影响被甩向螺旋通道外侧,而气体分布于通道内侧。进口含气率的增加会减少通道外壁面的液膜厚度。通道内置的矩形涡发生器可使内部工质产生二次流从而增强混合,有效提升截面含气率。除此之外,进口速度的增大、进口含气率的减小及矩形涡发生器的加入均会使矩形螺旋细通道内两相压降增大。  相似文献   

10.
周云龙  常赫 《化工进展》2016,35(Z1):20-25
在90°Y形汇流的矩形截面蛇形微通道内,采用格子Boltzmann方法对不同接触角的蛇形微通道内气液两相流动进行了数值计算。首先以空气和水为工作流体对气液两相流动进行模拟研究并通过实验进行验证。验证模型合理性后,根据模拟计算结果,以气液相流速为坐标绘制了不同接触角下的流型图并分析其差异性及原因;同时深入研究了液相黏度和接触角对于弹状流流体力学性质的综合影响;比较了具有不同接触角壁面的蛇形微通道内两相流压降、摩擦因子、壁面摩擦系数和剪切应力的分布规律,并讨论了蛇形微通道内气液两相流动的影响因素。研究表明疏水壁面即接触角大于90°时,微通道内两相流压降、摩擦因子、壁面摩擦系数和剪切应力均低于亲水壁面微通道内相关参数,更利于流体流动。  相似文献   

11.
微通道内气液两相流行为研究进展   总被引:4,自引:0,他引:4  
马友光  付涛涛  朱春英 《化工进展》2007,26(8):1068-1074
综述了微通道内的气液两相流行为及传质特性。在微通道内流型一般分为泡状流、弹状流、环状流和弹状-环状流,没有分层流。气液传质效率比常规尺度中的提高了2~3个数量级。讨论了气泡对气液两相流的影响及其生成、生长和聚并规律。介绍了微通道内气液两相流的计算机模拟结果。从实验、理论和数值模拟3个方面对微通道内气液两相流的研究和应用前景进行了展望。  相似文献   

12.
微通道内流动沸腾可视化观察与流型转换研究   总被引:1,自引:0,他引:1  
对去离子水在矩形微通道(0.54mm×1.6mm)中的流动沸腾进行了可视化观察和实验,观察到泡状流、弹状流、环状流三种流型,并对流型进行分类.根据流型转换实验数据,得到随千度和质量流速变化的流型分布图,在此基础上进一步拟舍得到流型转换预测的新关联式,对矩形微通道内流动沸腾换热的研究有重要的实际意义.  相似文献   

13.
《化学工程》2013,(10):40-44
采用高速摄像仪对T型进口的矩形微通道内气液二相流型进行了实验研究,实验物系采用单乙醇胺(MEA)水溶液-N2和单乙醇胺水溶液-CO2。对于无相间传质的单乙醇胺水溶液-N2二相流动过程,观测到了泡状流、弹状流、弹状-环状流和液环流;对于伴有化学吸收的单乙醇胺水溶液-CO2二相流动过程,未观测到泡状流,而观测到弹状-泡状流。在实验范围内,随着深宽比减小,无论是否伴有化学吸收,弹状流区域均减小;对伴有化学吸收的气液二相流,随化学反应速率的增大,流型转换线向右移动。以化学反应速率为控制参数,分别给出流型转换判别式,预测结果与实验数据吻合良好。在弹状-泡状流型中,随着气相表观流速的下降和液相表观流速、深宽比以及化学反应速率的上升,微通道内临界泡状距离减小。  相似文献   

14.
姚鑫宇  程潇  王晗  沈洪  吴慧英  刘振宇 《化工学报》2020,71(4):1502-1509
基于超快激光技术加工铜基正弦波弯曲型微通道,以去离子水为流动工质,在不同质量流量和热通量条件下,对弯曲型微通道内流动沸腾特性进行试验研究。基于温度/压力数据和流动可视化结果,发现通道传热系数随出口干度增大,呈迅速增大后减小并趋于稳定趋势,正弦波微通道相较直微通道具有更好的换热性能,传热系数最大提高127.7%,压降仅增加14.4%。波状通道结构能明显抑制流动沸腾中不稳定现象发生。通过可视化试验发现,随热通量增大,流型经历泡状流-弹状流-环状流的转变,换热主导机制由核态沸腾逐渐过渡到薄液膜蒸发。  相似文献   

15.
利用VOF多相流模型对R32在1、2mm水平光管内流动沸腾换热进行了二维非稳态数值模拟。模拟的工况为:质量流速100kg·m2·s~(-1),热通量12kW·m~(-2),饱和温度15℃。模拟结果显示:2mm通道内工质的流动沸腾过程依次经历了液相单相流、泡状流、弹状流;1mm通道内工质的流动沸腾过程依次经历了液相单相流、泡状流、受限泡状流、弹状流。利用模拟所得气相体积分数分布、温度分布,分析了R32管内流动沸腾过程中的基本规律和气泡运动特点,以及管径对流动沸腾换热过程流型的影响。利用数值模拟结果与实验结果进行对比,显示较好的一致性。  相似文献   

16.
《化工机械》2016,(3):357-364
采用Eulerian模型对矩形截面螺旋通道内气液两相流进行数值模拟,研究了螺旋通道内不同轴向位置气液两相流动的速度分布、相分布和温度分布特性,并分析无量纲螺距对速度分布、温度分布、单位长度压降和换热系数的影响。对水动力模型数值结果与实验结果、传热模型数值结果与实验关联式进行对比,结果表明:在一定范围内,无量纲螺距的增加使得速度场、温度场变化梯度增大,同时壁面换热系数稍有增大;超过无量纲螺距临界值,速度场和温度场的变化梯度随无量纲螺距的增加而减小;随着无量纲螺距的增加,单位长度平均压降稍有增加,并且增加的幅度逐渐减小;无量纲螺距对相分布特性几乎无影响;随着入口截面含气率的增加,单位长度平均压降和换热效果提高。  相似文献   

17.
以空气-水、空气-酒精为工质,在矩形截面为100μm×800μm的并列微通道(三通道)中进行了气液两相流动的流型和压降试验。观察到了泡状流、弹状流、波状流和分层流,而且微通道Ⅰ内流型变化最为复杂,微通道Ⅲ内的流型变化只出现了弹状流。通过与均相流计算模型预测值的对比发现:Mecadam粘度计算式预测的压降值在低气相速率时能较好地预测压降,但是预测范围非常小,全液相粘度预测的压降值在低液速时能够较好地预测本试验中的整体压降;分相流模型中Chishlom预测效果较好。  相似文献   

18.
采用CLSVOF(coupled level set and volume of fluid)方法,以空气和水为工作流体对小曲率矩形截面蛇形微通道内气液两相流动进行模拟研究。验证模型的合理性后,研究了曲率对弯通道内压降的影响,曲率及气相速度对弹状流气泡及液塞长度的综合影响;同时深入分析了弯管内气液两相流动的传质特性,包括不同曲率下气泡长度的变化,弯管内液侧体积传质系数与液膜体积传质系数的比较,曲率及气相速度对液相体积传质系数的影响。同时,对比了回转弯道与直微通道传质系数的差异,发现弯微通道可以强化传质。  相似文献   

19.
周云龙  常赫 《化工学报》2017,68(1):97-103
采用CLSVOF(coupled level set and volume of fluid)方法,以空气和水为工作流体对小曲率矩形截面蛇形微通道内气液两相流动进行模拟研究。验证模型的合理性后,研究了曲率对弯通道内压降的影响,曲率及气相速度对弹状流气泡及液塞长度的综合影响;同时深入分析了弯管内气液两相流动的传质特性,包括不同曲率下气泡长度的变化,弯管内液侧体积传质系数与液膜体积传质系数的比较,曲率及气相速度对液相体积传质系数的影响。同时,对比了回转弯道与直微通道传质系数的差异,发现弯微通道可以强化传质。  相似文献   

20.
微通道内气液(液液)二相流的实验研究进展   总被引:1,自引:0,他引:1  
综述了微通道内气液(液液)二相流的流型特征.微通道内气液二相流常见的流型为泡状流、弹状流、环状流和翻腾流;液液二相流常见的流型为液滴流、塞状流、平行流及环状流.分析了不同操作条件对气液(液液)二相流行为的影响.介绍了微通道内气液(液液)二相流流型判别谱图,对常用的弹状流、液滴流和塞状流进行了重点介绍.指出了微通道内气液...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号