首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
有机碳源和DO对短程硝化的影响   总被引:1,自引:0,他引:1  
在SBR反应器中控制温度为(30±1)℃,pH为7.5~8.5,DO质量浓度为0.6~1.8mg·L-1,MLSS质量浓度稳定在5 000 mg·L-1左右,实现了短程硝化反硝化,并在C/N为1/1、1/2、1/4和DO质量浓度为0.3~O.4、0.4~0.6、0.6~1.6、1.6~2.0 mg·L-1的情况下,对亚硝酸氮累积的效果进行对比试验.结果表明,氨氮的去除率随着C/N的增加而降低,C/N=1/4时氨氮去除率达到98.3%,亚硝态氮的累积率达到了99.95%,DO质量浓度为0.6~1.6mg·L-1时最适合于同步硝化好氧反硝化脱氮.出水氨氮质量浓度为0.57mg·L-1,亚硝态盐氮质量浓度为125.78mg·L-1,硝酸盐氮质量浓度为O.26mg·L-1.  相似文献   

2.
以疏水性无孔硅橡胶管为膜曝气组件,通过长期的运行试验,对硅胶膜曝气生物反应器中实现同步短程硝化反硝化的可行性进行了研究。结果显示:在温度为32℃,p H为7.5~8.0,溶解氧为0.5 mg/L,HRT为12 h,进水COD为300 mg/L,NH4+-N为60 mg/L时,SMABR具有最佳去除效果,此时出水NO2--N为7.3 mg/L,NO3--N未检测到,NH4+-N、TN、COD去除率分别为82.9%、71.0%、90.0%。研究结果表明:SMABR通过改变反应条件能稳定实现同步短程硝化反硝化。  相似文献   

3.
为快速实现低C/N比生活污水高效低耗稳定脱氮,在常温条件下,对短程硝化-厌氧氨氧化工艺的启动及脱氮性能进行研究,在常温,高DO(2.5 mg·L-1)条件下,采用实时控制结合神经网络模型预测控制可快速启动短程硝化,亚硝积累率达到95%以上。由于生物膜的独特结构可为厌氧氨氧化(Anammox)菌提供良好的厌氧环境,因此选用生物滤池来实现厌氧氨氧化,启动期间克服了温度变化的影响,第173天后,NH4+-N和NO2--N去除率达到90%以上,TN去除率达到80%,Anammox滤池成功启动。后续将短程硝化与厌氧氨氧化耦合,通过逐步提高滤速启动耦合系统,Anammox滤池滤速可提高到0.5 m·h-1,总氮容积负荷达到0.75 kg·m-3·d-1。系统出水TN平均浓度为8 mg·L-1,实现了短程硝化耦合厌氧氨氧化工艺稳定高效地处理生活污水。  相似文献   

4.
电流强度对电化学产氢自养反硝化脱氮效率的影响   总被引:1,自引:0,他引:1  
研究了温度为30℃、pH为7.5、进水NO3-N质量浓度30mg·L-1、HRT为10 h的条件下,不同电流强度(0~160mA)对电化学产氢纯自养反硝化的影响.结果表明,当电流在0~100mA时,电流强度与NO3--N去除率呈极线性正相关;出水NO2--N质量浓度随着电流强度增加先从0增大到6.86mg·L-1后又减少为1.80mg·L-1;但是,电流强度过大会抑制生物反硝化效率,同时会导致碳棒溶解,影响出水水质.  相似文献   

5.
考察了不同硫酸盐浓度对好氧反硝化菌铜绿假单胞菌CP1反硝化过程的影响。结果表明,随着硫酸盐浓度的增加,菌株CP1反硝化时间逐渐缩短,脱氮速率加快,硫酸盐为300 mg/L,菌株CP1获得最优的脱氮效果;当硫酸盐增加到750 mg/L时,反硝化时间大大延长,脱氮速率降低。在硫酸盐为450 mg/L时,菌株获得最大的脱氮速率,可达到48.83 mg/(L·h)。在0~1 200 mg/L硫酸盐质量浓度范围内,出水均无NO2--N累积。硫酸盐含量在整个反硝化过程中无明显变化。  相似文献   

6.
基于FNA处理污泥实现城市污水部分短程硝化   总被引:5,自引:1,他引:4       下载免费PDF全文
马斌  委燕  王淑莹  陈娅  彭永臻 《化工学报》2015,66(12):5054-5059
为实现城市污水短程硝化厌氧氨氧化生物脱氮,以去除有机物的实际污水为研究对象,考察了游离亚硝酸盐(FNA)处理污泥实现城市污水部分短程硝化的可行性。 结果表明,FNA处理活性污泥后,亚硝酸盐氧化菌(NOB)的亚硝酸盐氧化速率下降程度大于氨氧化菌(AOB)的氨氧化速率,且在0~0.75 mg HNO2-N·L-1范围内随着FNA浓度的增加抑制作用增强。接种实际污水厂活性污泥后,系统亚硝酸盐(NO2--N)积累率仅为1%,即为全程硝化。在控制污泥龄约为15 d的条件下,采用FNA处理污泥可使系统亚硝酸盐积累率增加至90%以上。水力停留时间调至2.5 h时,实现了部分短程硝化,且出水NO2--N/NH4+-N平均值为1.24,可满足厌氧氨氧化脱氮反应的要求。因此采用FNA处理污泥,结合水力停留时间和污泥龄控制可实现城市污水部分短程硝化。  相似文献   

7.
以低COD/N人工模拟废水为基质,研究移动床生物膜反应器(MBBR)内同步硝化反硝化(SND)过程。进水COD和NH4+-N的质量浓度分别为200 mg/L和40 mg/L,以K1型填料为载体(填充率为40%),DO控制在3~4mg/L,20 d后有稳定的生物膜形成。生物膜完全成熟后,每个填料上平均生物膜量为33.5 mg,出水COD和NH4+-N去除率平均分别达86.68%和97.25%,NO2--N基本无累积,NO3--N的质量浓度均保持在5 mg/L以下,TN去除率在后期最高达90.6%,计算得到SND率达91.66%,结果证实在单一反应器内实现了良好的同步硝化反硝化过程。动力学模拟得出同步硝化反硝化过程中的NO3--N饱和常数为5.83 mg/L,大于单级反硝化过程中的硝酸盐氮饱和常数。  相似文献   

8.
在DO质量浓度为1.5 mg/L、温度为28℃等条件下,NO2--N积累率>50%,系统实现短程硝化。硝化率为77.35%,反硝化率83.25%,SND率64.74%,HMBR实现同步短程硝化反硝化。COD平均去除率为91.61%,NH3-N去除率77.34%,TP去除率45.13%,且膜对COD、TP有截留作用。在系统实现耦合作用后对有机物有去除效果。  相似文献   

9.
采用A/O-MBR工艺对填埋场垃圾渗滤液进行了短程硝化反硝化脱氮研究。实验结果表明:系统驯化后稳定运行,COD去除率达到80%以上,NH4+-N、TN的平均去除率分别达到99.2%、92.2%;OⅠ与OⅡ池中NO2--N平均积累率分别达到91.7%、95.6%,表明系统主要的脱氮方式为短程硝化反硝化;过高或过低的DO都会影响NO2--N积累,硝化过程中的最佳DO为0.7~0.9 mg/L。PCR技术分析表明,A池中的优势菌种是反硝化细菌,占有率为70%;OⅡ池中的优势菌种是AOB,占有率为67%。  相似文献   

10.
通过SBR短程硝化反硝化同步脱氮除磷工艺处理模拟啤酒生产综合废水,为达到稳定的COD、NH4+-N和TP的去除及NO2--N的积累,对该工艺的影响因素进行了研究.结果表明,工艺的稳定运行是由进水COD、pH、DO、温度和MLSS等因素共同作用的结果,其中控制较低的DO的质量浓度(<0.5 mg·L-1)是实现NO2--N积累的关键因素之一;过低或过高的进水pH、COD均会影响该工艺的正常运行.温度及MLSS含量会影响氨氧化过程与反硝化过程的反应速率,但不是系统稳定运行的决定因素.当DO的质量浓度为0.3~0.5 mg·L-1、进水COD低于1 100 mg· L-1、pH为7.2~8.4,在12~25℃可获得稳定的NO2--N积累.  相似文献   

11.
FA与FNA对两级UASB-A/O处理垃圾渗滤液短程硝化的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
采用两级UASB-A/O组合工艺处理实际高氨氮城市生活垃圾渗滤液,在获得稳定的有机物与氮同步去除的前提下,重点考察游离氨(FA)与游离亚硝酸(FNA)对短程硝化稳定性的影响。在UASB1中进行反硝化同时产甲烷以去除部分TN和部分COD,在UASB2通过产甲烷进一步去除COD,在A/O反应器中主要实现高氨氮的短程去除和剩余COD的降解。试验共进行104 d,历经短程硝化稳定、破坏和恢复3个阶段。结果表明,当最小FA浓度控制在3.1 mg.L-1以上时,系统可维持稳定的短程硝化,NH+4-N去除率、NO-2-N积累率、TN去除率分别可达到99%、95%和86%。当FA浓度小于0.6 mg.L-1时,在原水碱度充足且过曝气的条件下,仅依靠FA对NOB的抑制作用,难于维持短程硝化,NO-2-N积累率下降到29%。前两阶段的FNA浓度均低于0.011 mg.L-1,没有对NOB起到抑制作用,而在第3阶段,FA浓度仍维持在较低浓度,但系统FNA浓度通过降低pH值而大幅度提高(最大值为0.414 mg.L-1),从而利用FA和FNA的协同抑制作用迅速恢复并维持短程硝化,NO-2-N积累率升高到92%。可见FA与FNA是实现并维持城市生活垃圾渗滤液短程硝化的重要影响因素。  相似文献   

12.
ASBBR反应器厌氧氨氧化反应稳定性研究   总被引:1,自引:0,他引:1  
利用已经成功启动的ASBBR反应器,通过不同的进水基质浓度,不同进水亚硝态氮、氨氮质量比和不同冲水比3个因素的交替变化,研究了厌氧氨氧化反应器脱氮效能稳定性的影响.当进水亚硝态氮与氨氮质量比在1~13的范围内变动时,对反应器内厌氧氨氧化反应的脱氮效能几乎没有影响,表明ASBBR反应器具有较高的抗负荷冲击能力.当进水后反应器内亚硝态氮质量浓度大于80mg·L~(-1)时,将导致反应器的总氮去除率下降,并且随着亚硝态氮浓度的增加,脱氯效果会越来越差.同时研究还表明水力冲击不会引起厌氧氨氧化反应器出现微生物流失,但随着水利负荷的增加,厌氧氨氧化细菌时新环境适应时间将会延长,导致相同周期内反应器脱氮效能的下降.  相似文献   

13.
多级生物膜反应器分段进水方式对脱氮效能影响研究   总被引:1,自引:0,他引:1  
提出多级生物膜反应器,考察了分段进水方式对反应器处理城镇污水生物脱氮效能的影响.结果表明,分段进水点的数量、流量分配及容积分配对反应器脱氮效能的影响显著,分段进水方式有效地提高了碳源利用率以及反应器脱氮效能.在水温为25℃左右,溶解氧为5mg·L~(-1),挂膜密度为30%,COD负荷为1.2 kg·m~(-3)·d~(-1),总氮负荷为0.22 kg·m~(-3)·d~(-1)的条件下,反应器分段进水方式采用第1级、第3级、第6级分段进水,容积分配比为2:3:4,流量分配比为2:2:1时,可使出水COD为38 mg·L~(-1),出水NH_4~+-N和TN的质量浓度分别为1.5 mg·L~(-1)和11.1 mg·L~(-1),去除率分别为80.8%,95.3%和69.2%,与单点进水方式相比TN去除率提高了8.4%.  相似文献   

14.
高氮豆制品废水的短程硝化反硝化脱氮技术及其过程控制   总被引:3,自引:0,他引:3  
采用交替好氧 /缺氧运行方式和适时过程控制策略开发了一种生物脱氮新工艺 ,该工艺结合了短程硝化反硝化脱氮技术。试验过程中选择了 3种不同运行模式去实现短程硝化反硝化脱氮技术 ,即传统的序批式活性污泥法 (SBR)运行模式、固定时间控制交替好氧 /缺氧运行模式和适时过程控制交替好氧 /缺氧运行模式。结果显示 ,适时过程控制交替好氧 /缺氧运行模式效果最佳 ,它不但能提高硝化、反硝化速率和减少总反应时间 ,而且可以节省硝化过程中碱度的投加和反硝化过程碳源的投加量 ,降低了运行成本。  相似文献   

15.
曾薇  张洁  纪兆华  王安其  彭永臻 《化工学报》2016,67(6):2533-2541
采用连续流MUCT工艺处理实际生活污水,研究短程生物脱氮的实现,并采用实时荧光定量PCR方法(quantitative real time PCR,QPCR)分析全程脱氮向短程脱氮转变过程中氨氧化细菌(ammonia-oxidizing bacteria,AOB)和亚硝酸盐氧化菌(nitrite-oxidizing bacteria,NOB)的动态变化。通过降低溶解氧浓度为0.5mg·L-1和缩短水力停留时间为6h,实现短程硝化,亚硝酸盐积累率达到90%。在短程硝化稳定运行阶段总氮去除率高达90%以上,远远大于全程阶段的74%。QPCR结果表明全程脱氮阶段水力停留时间的缩短使AOB细胞数呈现下降的趋势,NOB细胞总数稳定维持在108cells·(g dried sludge)-1。短程脱氮阶段,AOB细胞数小幅度上升,由3.17×106cells·(g dried sludge)-1增长到1.32×107cells·(g dried sludge)-1,同时AOB占全菌的比例也小幅度增长。NOB的细胞数在5.9×107~1.78×108cells·(g dried sludge)-1之间波动。NOB占全菌的比例由1.44%下降到0.47%。因此,MUCT工艺处理实际生活污水的系统中NOB丰度降低及活性抑制是实现并维持短程生物脱氮的重要原因。短程脱氮运行期间由于控制低溶解氧浓度和短的水力停留时间,AOB丰度及相对含量没有显著增加,甚至下降,但不会影响氨氮和总氮的去除。  相似文献   

16.
高大文  彭永臻  王淑莹 《化学工程》2006,34(7):38-41,57
采用序批式间歇活性污泥反应器(SBR)研究了进水有机物和氨氮负荷对交替好氧/缺氧短程硝化反硝化生物脱氮工艺的影响。研究结果认为:进水中不同COD和氨氮质量浓度均没有对交替好氧/缺氧短程硝化反硝化生物脱氮工艺中的实时控制参数和处理效果产生影响,系统运行稳定,仅是由于进水COD和氨氮质量浓度的大幅度变化将会导致各自的好氧曝气所需时间有所差异;进水氨氮质量浓度越高,所需硝化时间越长。但经过实时控制以后,无论进水氨氮质量浓度如何变化,硝化和反硝化作用都是很完全的;反应器最终出水中基本检测不到氨氮和亚硝酸盐氮质量浓度。因此,可以得出交替好氧/缺氧短程硝化反硝化生物脱氮工艺抗冲击负荷能力强,当采用实时控制策略控制脱氮过程时,系统运行稳定。  相似文献   

17.
低含量氨氮污水厌氧氨氧化影响因素研究   总被引:6,自引:0,他引:6  
采用厌氧复合床,经自养型反硝化过程转化,成功启动了厌氧氨氧化反应器,共耗时165d.反应器启动成功后,TN容积负荷达到0.17 kg·m~(-3)·d~(-1),NO_2~--N与NH_4~+-N去除率分别为100%和93%.在此基础上,研究了pH、温度及不同有机质对厌氧氨氧化反应过程的影响,并通过正交及对比试验确定各因素的最佳控制条件.结果表明,在氨氮的质量浓度较低(~18mg·L~(-1))条件下,厌氧氨氧化反应pH=8.0.温度30℃、有机质(TOC)的质量浓度为40 mg·L~(-1)时,反应达到最佳状态.  相似文献   

18.
采用包埋固定化细菌技术制成的包埋菌颗粒为载体的曝气流化床工艺,对城市给水厂氨氮等指标超标的2种原水进行试验.结果表明,针对2种微污染水源水,包埋硝化菌颗粒流化床都可以高效、快速地去除水体中的氨氮和亚硝酸盐氮.在水温为23~27℃,水力停留时间(HRT)30min时,1号水源水进水氨氮,亚硝酸盐氮质量浓度平均值为1.88、0.300mg·L~(-1),出水质量浓度平均值分别为0.31、0.106mg·L~(-1);2号水源水进水氨氮、亚硝酸盐氮质量浓度平均值为0.83、0.036 mg·L~(-1),出水质量浓度平均值分别为0.21、0.015 mg·L~(-1).包埋硝化菌流化床可以高效快速地去除不同类型微污染水源水中的氨氮,装置简单,操作、管理方便,是一项有广泛应用前景的微污染水处理技术.  相似文献   

19.
采用EGSB+SBR组合工艺对邯郸市生活污水进行了试验研究.结果表明,在常温下进水COD为245~420mg·L~(-1),EGSB反应器的水力停留时间为3h,反应器COD容积负荷达到3.5 kg·m~(-3)·d~(-1),上升流速达到6.5m·h~(-1)时,COD去除率为95%(COD<60mg·L~(-1)),但氨氮去除效果不佳,故采用SBR工艺为后续处理工艺,其出水的氮、磷等指标达到国家一级排放标准(GB8978-1996).  相似文献   

20.
EGSB-CASS工艺处理头孢类抗生素生产废水   总被引:2,自引:0,他引:2  
头孢类抗生素的原料药和粉针制剂的生产废水属于高浓度的难生化降解的有机废水,其主要污染成分有甲醇、一甲胺、二甲胺、二甲基甲酰胺(DMF)等.介绍了EGSB-CASS(厌氧膨胀颗粒污泥床反应器·循环式活性污泥法)组合工艺在常温下处理制药废水的工程应用,运行结果表明:在10~30℃,进水COD为3 500~5 400 mg·L~(-3)的情况下,COD的去除率约为90%,EGSB的有机容积负荷可达1.6kg·m~(-3)·d~(-1),出水各项指标均达到污水综合排放标准(GB 8987-1996)生物制药行业二级排放标准.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号