首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 328 毫秒
1.
基于导电橡胶的一种新型类皮肤触觉传感器阵列的研究   总被引:1,自引:0,他引:1  
本文设计了一种基于导电橡胶的类皮肤柔性触觉传感器阵列,传感器阵列采用交叉排列的两层节点的框架结构,用注射成型(LIMS)的方法进行导电橡胶的整体浇注,通过测量外力作用下导电橡胶的阻值变化,求解出加载在柔性传感器表面上的三维力位置和大小。该设计突破了当前基于盔甲的柔性触觉传感器的设计思路,具有优良力学特性、柔韧性好、抗干扰能力强、在传感器表面可以连续点测量的特性。实验仿真结果表明,在理想导电橡胶的条件下,设计的柔性触觉传感器阵列测量三维力有较高的分辨率和精度,可以满足当前用于作机器人皮肤的需要。  相似文献   

2.
一种新型机器人三维力柔性触觉传感器的设计   总被引:1,自引:1,他引:0  
基于柔性力敏导电橡胶材料,设计了一种能测量三维力的新型机器人柔性触觉传感器。研究了力敏导电橡胶材料的压阻效应,阐述了触觉传感器的设计思想,分别进行了触觉传感器单元设计和阵列结构设计和研究。获得了计算三维力的数学模型,并通过实验进行了三维力的验证。结果表明,设计的机器人三维力柔性触觉传感器具有设计简单,造价低廉,柔顺性好等优点,而且布置成阵列结构可用于医疗、体育、机器人等领域中检测三维力信息。  相似文献   

3.
一种新型三维力柔性阵列触觉传感器研究   总被引:4,自引:1,他引:3  
研究了一种基于压敏导电橡胶的新型三维力柔性阵列触觉传感器,突破了目前触觉传感器不能兼有柔韧性和检测三维力的局限性,实现了真正类皮肤.该传感器利用了压敏橡胶的压敏特性,通过检测橡胶的电阻变化来分析受力信息.介绍了该传感器的基本结构,分析了其工作原理,给出了导电橡胶受力时的有限元分析结果,并对传感器进行了初步的仿真研究,结果表明该传感器能够实现检测三维力信息,为三维力柔性阵列触觉传感器的设计研究提供了新思路.  相似文献   

4.
根据接触力学理论和导电橡胶的电阻应变关系,对一种基于压敏导电橡胶的三维力柔性触觉传感器阵列的传感机理进行深入的探索,并应用静电比拟法导出传感器节点间电阻与表面应力激励的关系,建立了传感器阵列表面三维力激励与输出电阻的物理模型。以此为基础对传感器输入输出特性进行了仿真,并基于仿真结果对传感器结构进行优化。仿真结果验证了该传感器结构设计的合理性。  相似文献   

5.
导电橡胶传感器是智能机器人服装的核心机件;标定出导电橡胶传感器的压阻特性是实现智能机器人触觉传感服装的核心内容之一;实验中,将导电橡胶安装在柔性阵列电极板里制作成触觉传感器阵列服装。对该传感器提出多种测量方法,确立其标定模型;给出数据建模的一般步骤。指出导电橡胶传感器设计的改进方向与部分方法。  相似文献   

6.
结合理论分析和文献报道对现有柔性触觉传感器的主要技术进行了归纳总结,主要包括微机电系统(MEMS)的压阻原理,通过惠斯顿电桥将力转换成电量的基本原理,基于新型材料聚偏二氟乙烯(PVDF)的压电特性,电介质的力学性质与电学性质的耦合作用,以及基于导电橡胶的柔性触觉传感器导电机理和压阻效应。概述了3种主要技术物理特性,总结了3种主要技术应用在柔性触觉传感器上的优缺点和在各个领域上的实际应用,提出了触觉传感器一些有待解决的问题和研究方向。  相似文献   

7.
搭建了基于LMS Test.Lab的分析试验系统,进行力锤系统与激振系统的配置,对导电橡胶进行了试验,并对测试数据进行分析.其结果对于进一步改进导电橡胶压力传感器提供了理论依据.研究表明:导电橡胶作为柔性压力传感器基材具有较好的阶跃响应特性与频率响应特性,其固有频率随着导电橡胶厚度的增大而增大.  相似文献   

8.
柔性电容式拉伸传感器,可用于测量关节弯曲和肌肉拉伸等人体动作,具有低功耗,线性度高等优点,作为新一代可穿戴传感器在运动检测、医疗康复领域具有广泛应用前景。但现有电容式拉伸传感器存在应变灵敏度度(Gauge Factor, GF)不高的缺点,导致在关节微小弯曲角度测量方面精度较低。针对此,本文提出了一种基于无机硅胶和导电织物的分段式结构柔性电容式应变传感器。传感器采用不同杨氏模量硅胶设计了非线性结构的介电弹性体,并以柔性导电布作为电极。同时,建立了传感器的关节弯曲角度感知模型。实验结果表明,该传感器分段式结构设计稳定性好,提高了在中等应变情况下(0~50%)的应变灵敏度因素(GF=1.5)。将其安装于手套上测试,弯曲角度预测模型能够对关节弯曲角度进行较好的预测。该柔性电容式应变传感器制作工艺简单,可低成本大规模制造,该分段式结构设计与角度传感模型适用于医疗康复训练和机器人操控等创新应用。  相似文献   

9.
介绍了导电橡胶力敏传感器的应用前景,分析了导电橡胶传感器的基本特性。通过对该传感器敏感单元制备过程的研究,指出了影响复合材料导电性能的主要因素包括填料类型、填充量、基体材料性能以及制备工艺等。通过对导电橡胶传感器压阻特性的研究,阐述了导电橡胶复合材料的导电机理。描述了该传感器的结构设计从检测简单的单向压力到检测三维力的发展过程。表述了制约导电橡胶力敏传感器的发展中的主要因素,并对未来研究方向提出了展望。  相似文献   

10.
以碳纳米管(CNTs)作为导电填料,聚二甲基硅氧烷(PDMS)为基体材料,采用溶液法制备出CNTs/PDMS导电复合材料。研究了碳纳米管浓度对复合材料的电学特性和压阻特性的影响规律,得到碳纳米管在PDMS中的渗滤区域。通过复合材料的压力灵敏度优化碳纳米管浓度。以制备的复合材料为敏感材料,FPCB工艺加工的柔性基板为电极,设计制备了一种简单结构和工艺的柔性阵列压力传感器。用零电势法设计了阵列电阻读出电路与LabVIEW实现的上位机配合,实现信号读取和显示。最后通过一个应用实例表明,该柔性阵列压力传感器及信号处理系统可以实现压力分布与大小的实时监测,可为柔性阵列压力传感器设计与制备提供参考。  相似文献   

11.
田疆  田洁  蒲军  吴晓琴  谢凯年 《机器人》2004,26(1):54-057
利用导电橡胶的压阻特性,设计并制作了基于导电橡胶的触觉传感器阵列.根据触觉传感器常用的静态处理方法的缺点,提出了先进行传感器动态扫描、然后采用“位置匹配法”恢复图形的新方法.完成了触觉传感器系统的软硬件设计,实现了数据的实时采集、传输、显示.􀁱  相似文献   

12.
Tactile sensors based on conductive polymers   总被引:1,自引:1,他引:0  
This paper presents results from a selection of tactile sensors that have been designed and fabricated. These sensors are based on a common approach that consists in placing a sheet of piezoresistive material on the top of a set of electrodes. We use a thin film of conductive polymer as the piezoresistive material. Specifically, a conductive water-based ink of this polymer is deposited by spin-coating on a flexible plastic sheet, giving it a smooth, homogeneous and conducting thin film. The main interest in this procedure is that it is cheap and it allows the fabrication of flexible and low cost tactile sensors. In this work, we present results from sensors made using two technologies. Firstly, we have used a flexible printed circuit board (PCB) technology to fabricate the set of electrodes and addressing tracks. The result is a simple, flexible tactile sensor. In addition to these sensors on PCB, we have proposed, designed and fabricated sensors with screen-printing technology. In this case, the set of electrodes and addressing tracks are made by printing an ink based on silver nanoparticles. The exhaustive characterization provides us insights into the design of these tactile sensors.  相似文献   

13.
This paper presents a novel tactile sensing technique for tissue elasticity measurements. A prototype flexible tactile sensor has been successfully fabricated using polydimethylsiloxane as the structural material. The proposed sensor comprises an array of capacitors with no active elements used. By varying the sizes of sensing membranes within the capacitors, different stiffnesses of sensing diaphragms can be achieved. The elasticity of the targeted object can be thereafter measured based on the relative deflections of the sensing diaphragms. The fabricated sensor has been calibrated by an off-the-shelf polymer durometer hardness selector pack. The results show a sensing resolution of 0.1 MPa for elasticity measurement and a force sensing resolution as small as 5 mN. This flexible tactile sensor can be embedded on the distal portions of various endoscopic instruments for in vivo tissue elasticity measurements. $hfill$[2009-0143]   相似文献   

14.
This paper proposes and demonstrates a novel flexible tactile sensor for both normal and shear load detections. For the realization of the sensor, polyimide and polydimethylsiloxane are used as a substrate, which makes it flexible. Thin metal strain gauges, which are incorporated into the polymer, are used for measuring normal and shear loads. The salient feature of this tactile sensor is that it has no diaphragm-like structures. The unit tactile cell characteristics are evaluated against normal and shear loads. The fabricated tactile sensor can measure normal loads of up to 4 N, and the sensor output signals are saturated against loads of more than 4 N. Shear loads can be detected by different voltage drops in strain gauges. The device has no fragile structures; therefore, it can be used as a ground reaction force (GRF) sensor for balance control in humanoid robots. Four tactile unit sensors are assembled and placed in the four corners of the robots sole. By increasing bump dimensions, the tactile unit sensor can measure loads of up to 2 kgf. When loads are exerted on the sole, the GRF can be measured by these four sensors. The measured forces can be used in the balance control of biped locomotion systems.  相似文献   

15.
为了满足机器人与外界环境、对象发生接触及交互作用时的触觉感知需求,提出了一种基于光纤布拉格光栅(FBG)的柔性触觉传感器.该传感器采用3×3 FBG阵列作为柔性传感元件,聚二甲基硅氧烷(PDMS)材料构成双层柔性基体.介绍了传感器的传感原理并采用有限元方法对其弹性体进行力学仿真分析,基于标定实验平台完成该传感器的静态标定实验.传感器的空间分辨率为25mm,在10mm×10mm载荷施加单元下,对力的感知范围为0~7N,且传感器具有较好的线性度和灵敏度,重复性和一致性良好,力灵敏度为0.16nm/N.实验结果和分析研究都证明了柔性触觉传感器的可行性.该传感器与人体皮肤触感及结构极为相似,且布线简单、抗干扰能力强.  相似文献   

16.
In this work we present a light sensor for tag integration based on the principle of a dye sensitized solar cell, using a flexible substrate and a polymer electrolyte. These features make an integration of the light sensor into current smart label fabrication processes possible. A printable light sensor combined with novel conductive polymers could solve reliability issues resulting from bonding processes. The components of the light sensor were chosen in a way to enable screen print production. The dye Ruthenium 535-bis-TBA has been used as active dye and Iodolyte AN-50 by Solaronix and PEDOT/PSS by H.C. Starck have been used as liquid and polymer electrolyte respectively. In order to prepare the liquid electrolyte for tag integration it has been gelatinized by addition of silica gel. Depending on the amount of silica gel different stiffness levels have been achieved. The functional layers have been deposited first on glass substrate and then on KAPTON foil by Du Pont. The polymer has been used as flexible substrate. Special care has been taken regarding the preparation of the transparent electrode. The transparent conductive oxide (TCO) indium tin oxide (ITO), which has been used as transparent electrode, has to be cured at elevated temperatures on the polymer substrate. A complete process flow for an integrated light sensor is being described in this work.  相似文献   

17.
徐菲 《传感技术学报》2012,25(3):359-364
针对目前触觉传感器研究中不能兼有柔韧性和多维力测量等难题,设计了一种基于力敏导电橡胶的具有整体两层非对称网状式结构的触觉传感器,通过检测导电橡胶的电阻值变化来分析三维力信息。本文介绍了该传感器的基本结构,并基于理想力敏导电橡胶的力学特性建立了三维力并行测量的数学模型,通过对该模型的求解解决了三维力及各受力点之间复杂的耦合问题。仿真实验结果表明该传感器能够实现对表面任意单点三维力、多点三维力以及三维面力信息的测量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号