首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic poly(ester‐amine) with a peripheral hydroxyl [PEA(OH)] was synthesized from dendritic PEA terminated with acrylic double bonds [PEA(?)] and diethanolamine (DEA) by a Michael addition reaction. The effects of the reaction temperature, time, and solvent on the purities of PEA(OH) were studied. It was found that when the mole ratio of PEA(?) to DEA was 1:8 and the reaction was carried out in methanol at 25°C for 22 h, the purity of PEA(OH) was 94.6%. The structure of PEA(OH) was identified by IR, 1H‐NMR, and elemental analysis. PEA(OH) is a surfactant and its aqueous form exhibits cloud points between the mass concentrations of 0.1 and 50 mass %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 60–64, 2005  相似文献   

2.
Stable Ag nanoparticles of 10–20 nm were prepared by reduction of AgNO3 with NaBH4 in water solution in the presence of low generational hydroxyl‐ terminated poly(ester‐amine) dendrimer G1.0 (OH)16 and amino‐terminated poly(ester‐amine) dendrimer G1.5 (NH2)8 by optimizing preparation conditions. UV–vis absorption spectra and transmission electron microscopy were adopted to characterize absorption properties of Ag+/dendrimer complex, Ag/dendrimer nanocomposite aqueous solutions, and the morphology of the formed Ag nanoparticles, respectively. The results showed that the size of the Ag particles increased with Ag+/dendrimer molar ratio, and the size of Ag nanoparticles in Ag/G1.0 (OH)16 system was larger than that of Ag nanoparticles in Ag/G1.5 (NH2)8 system, while the polydispersities of two systems were similar. Moreover, the Ag/G1.5 (NH2)8 nanocomposite system was more stable than the Ag/G1.0 (OH)16 one. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 422–426, 2007  相似文献   

3.
Stearyl‐group‐terminated poly(ester amide) dendrimers [PEAD (R)3 and PEAD (R)8] and a poly(amino amide) dendrimer [PAMAM (R)4] were synthesized by the amidation of three, eight, and four terminated primary amino groups in poly(ester amine) dendrimers and a poly(amino amide) dendrimer with stearyl chloride. The dendrimer structures were characterized with IR and elemental analysis. The toluene solutions of the stearyl‐group‐terminated dendrimers were thermosensitive. Not only did gels form in PEAD (R)3–, PEAD (R)8–, and PAMAM (R)4–toluene solutions below 57.5, 60, and 49°C, respectively, but the content of toluene in the gels depended on the temperature, and a break existed at about 30°C. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 341–346, 2005  相似文献   

4.
A series of biodegradable thermo‐sensitive hydrogels were synthesized by ring‐opening polymerization of methoxy‐poly(ethylene glycol) (mPEG) and various ester monomers, i.e. D ,L ‐lactide, glycolide, β‐propiolactone, δ‐valerolactone and ε‐caprolactone. The copolymers were characterized using 1H NMR spectroscopy and gel permeation chromatography. The micelle properties were also measured. The results indicated that the diblock copolymers formed nano‐micelles at low concentrations in aqueous phase. The lower critical solution temperatures of the diblock copolymers were above 35 °C at 1 wt%. As the temperature increased above room temperature, the diblock copolymer solutions underwent a sol‐to‐gel phase transition, which was manifested in viscosity increases, indicative of the formation of a gel. The mPEG–polyester diblock copolymer solutions exhibited sol‐gel transition behavior as a function of temperature and polymer concentration. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
A series of core‐shell poly(amidoamine) (PAMAM) dendritic compounds bearing different end groups such as  OH, NH2, and NH3+−Cl up to the third generation were prepared via successive Michael addition of a nucleophilic core (ethylenediamine) to methylacrylate followed by amination steps using ethylenediamine for the amine‐terminated while ethanolamine for the hydroxyl‐terminated compounds, also the protonated ammonium salt terminated form was obtained by cationization of the amine‐terminated form using hydrochloric acid solution. The Surface activity and aggregation behavior of the corresponding aqueous solutions of the prepared generations with their different end groups were studied and confirmed by surface tension measurements using ring method technique. The prepared dendrimers showed high surface activity and the measurements revealed their ability to self aggregate in water at very low concentrations, critical aggregation concentrations (CACs). The CACs were found to decrease with increasing the generation number, which implies that molecular weight and structure play important rules in controlling the surface activity and CAC. The dendritic compounds proved to be effective as adhesion promoters for urea formaldehyde (UF) resins when applied as wood adhesive systems, which was ascribed in partial to the improved wetting over the substrate, a role that is fundamentally related to the huge number of function groups present at the interface. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The continued interest in graft copolymer architectures arises from their unique solution properties and potential for a myriad of applications ranging from drug delivery to adhesives. Poly(vinyl pyrrolidone) (PVP) represents a popular amorphous, water‐soluble polymer used as a polymeric binder in binder jetting additive manufacturing, as fillers in cosmetic products, and for subcutaneous drug delivery systems. This report describes the synthesis of poly(2‐oxazoline) and PVP graft copolymers using a ‘grafting to’ methodology with an efficient thiol–ene ‘click’ reaction. Copolymerization of 2‐methyl‐2‐oxazoline and 2‐(3‐butenyl)‐2‐oxazoline introduced pendent vinyl grafting sites with a predictable absolute number‐average molecular weight. In parallel, reversible addition‐fragmentation chain‐transfer polymerization and subsequent aminolysis yielded well‐defined, oligomeric, thiol‐terminated PVP. Thiol–ene click chemistry enabled the formation of poly(2‐oxazoline)‐graft‐poly(vinyl pyrrolidone) (PMeOx‐g‐PVP) copolymers with varying mole percent grafting sites and PVP graft length. 1H NMR spectroscopy, aqueous SEC with multiangle light scattering (SEC‐MALS), and bromine titrations confirmed chemical structure, and DSC with TGA elucidated thermal transitions. Aqueous SEC‐MALS and 1H NMR spectroscopy also determined absolute number‐ and weight‐average molecular weights and average grafting levels, which revealed optimal reaction conditions. Zero‐shear viscosities of 5 and 10 wt% solutions in deionized water for each graft copolymer compared to their linear analogs demonstrated a significant (ca 31%) decrease in viscosity at the same number‐average molecular weight. This decrease in solution viscosity suggested PMeOx‐g‐PVP copolymers as exceptional alternatives to linear analogs for aqueous‐based, binder jetting additive manufacturing.  相似文献   

7.
Crosslinked oligosilylstyrene–poly(dimethylsiloxane) composite membranes were used to separate 1,2‐dimethoxyethane (1,2‐DME) from dilute aqueous solutions through a pervaporation process. The composite membranes were prepared through the casting of solutions of H‐terminated oligosilylstyrene and vinyl‐terminated poly(dimethylsiloxane) onto the surfaces of polysulfone ultrafiltration membranes. A crosslinked poly(dimethylsiloxane) gel was generated through the reaction of H‐terminated oligosilylstyrene and vinyl‐terminated poly(dimethylsiloxane), with a platinum complex used as a catalyst. The pervaporation characteristics of the composite membranes were investigated with respect to the feed composition of 1,2‐DME, the feed temperature, the downstream pressure, and the top‐layer thickness of the composite membranes. The composite membranes exhibited preferential selectivity to 1,2‐DME. Depending on the operation conditions, the separation factor and permeation rate of 1,2‐DME were 55–184 and 0.31–3.3 g/m2 h, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2284–2294, 2004  相似文献   

8.
The free‐radical copolymerization of water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) was carried out with a feed monomer ratio of 75:25 mol %, and the total monomer concentration was 2.67M. The synthesis of the copolymer was carried out in dioxane at 70°C with benzoyl peroxide as the initiator. The copolymer composition was obtained with elemental analysis and 1H‐NMR spectroscopy. The water‐soluble polymer was characterized with elemental analysis, Fourier transform infrared, 1H‐ and 13C‐NMR spectroscopy, and thermal analysis. Additionally, viscosimetric measurements of the copolymer were performed. The thermal behavior of the copolymer and its complexes were investigated with differential scanning calorimetry (DSC) and thermogravimetry techniques under a nitrogen atmosphere. The copolymer showed high thermal stability and a glass transition in the DSC curves. The separation of various metal ions by the water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) reagent in the aqueous phase with liquid‐phase polymer‐based retention was investigated. The method was based on the retention of inorganic ions by this polymer in a membrane filtration cell and subsequent separation of low‐molar‐mass species from the polymer/metal‐ion complex formed. Poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) could bind metal ions such as Cr(III), Co(II), Zn(II), Ni(II), Cu(II), Cd(II), and Fe(III) in aqueous solutions at pHs 3, 5, and 7. The retention percentage for all the metal ions in the polymer was increased at pH 7, at which the maximum retention capacity could be observed. The interaction of inorganic ions with the hydrophilic polymer was determined as a function of the pH and filtration factor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 178–185, 2006  相似文献   

9.
We used a molecular imprinting approach to achieve specific metal binding utilizing N‐methacryloyl‐(L )‐cysteine methyl ester (MAC) as a metal‐complexing ligand. MAC was synthesized using methacryloyl chloride and cysteine methyl ester. Then, Fe3+ was complexed with MAC monomer. Fe3+‐imprinted poly(hydroxyethyl methacrylate‐N‐methacryloyl‐(L )‐cysteine methyl ester) [poly(HEMA‐MAC)] beads with average size of 63–140 μm were produced by suspension polymerization. After that, the template ions (i.e. Fe3+ ions) were removed by 0.1M HCl. Fe3+‐imprinted beads were characterized by swelling studies, FTIR, and elemental analysis. The Fe3+‐imprinted beads with a swelling ratio of 72%, and containing 3.9 mmol MAC/g were used in the binding of Fe3+ ions from aqueous solutions, tap water, certified reference serum sample, and real serum sample. Maximum binding capacity, optimum pH, and equilibrium binding time were 107 μmol/g, pH 3.0, and 30 min, respectively. It was observed that even in the presence of other ions, Fe3+‐imprinted beads selectively bound Fe3+ ions with 97% efficiency. Removal of Fe3+ ions from certified reference serum sample was approximately found to be 33%. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3520–3528, 2006  相似文献   

10.
A positive‐working, aqueous‐base‐developable photosensitive polyimide precursor based on poly(amic ester)‐bearing phenolic hydroxyl groups and a diazonaphthoquinone photosensitive compound was developed. The poly(amic ester) was prepared from a direct polymerization of 2,2′‐bis‐(3‐amino‐4‐hydroxyphenyl)hexafluoropropane and bis(n‐butyl)ester of pyromellitic acid in the presence of phenylphosphonic dichloride as an activator. Subsequently, the thermal imidization of the poly(amic ester) precursor at 300°C produced the corresponding polyimide. The inherent viscosity of the precursor polymer was 0.23 dL/g. The cyclized polyimide showed a glass‐transition temperature at 356°C and a 5% weight loss at 474°C in nitrogen. The structures of the precursor polymer and the fully cyclized polymer were characterized by Fourier transform infrared spectroscopy and 1H‐NMR. The photosensitive polyimide precursor containing 25 wt % diazonaphthoquinone photoactive compound showed a sensitivity of 150 mJ/cm2 and a contrast of 1.65 in a 3 μm film with 1.25 wt % tetramethylammonium hydroxide developer. A pattern with a resolution of 10 μm was obtained from this composition. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 352–358, 2002  相似文献   

11.
The structure and properties of poly(deamino‐tyr‐tyr carbonate hexyl ester), in dilute and semidilute solutions, were studied using static, dynamic light scattering, and viscometry. The overlap concentration, c* is determined by viscosity. The angular dependence of Zimm plots shows no downturn at low angles. In addition, bimodal distribution curves were computed from the quasielastic measurements. The radius of gyration and the second virial coefficient A2 are found to be respectively 45.8 nm and 9.4 mol cm3 g?2. The correlation and persistence lengths are discussed. The poly (deamino‐tyr‐tyr carbonate hexyl ester) or poly(DTH‐carbonate) chain in THF, at T = 20°C, behaves as a wormlike chain with persistence length. The persistence length obtained using light scattering is compared with that obtained using viscosity with good agreement. These values obtained from these measurements reflect a high degree of local chain persistence. The reduced viscosity in dilute regime provides a value of apparent viscosity hydrodynamic radius three times lower than obtained by static light scattering. POLYM. ENG. SCI., 50:1605–1612, 2010. © 2010 Society of Plastics Engineers  相似文献   

12.
PCL‐segmented multiallyl‐functionalized poly (ester urethane) prepolymers (PEUs) were prepared in a two‐step process. First, hydroxyl‐terminated PCL and glycerol simultaneously reacted with an excess of a diisocyanate, the obtained isocyanate functionalized prepolymers then reacts with allyl amine. PEUs structure choice mainly focused on two aspects: the PCL segments concentration and the allyl functionality that, respectively, affects the biodegradability and the density of the issued networks. The concentrations of the different reactants were fixed, taking into account the desired mean structure and also to prevent crosslinking during the synthesis of the prepolymers. FTIR was principally used to monitor the synthesis of allyl functionalized PEUs. The carbonyl absorption of PCL, initially located at 1720 cm?1, reaction of the PCL and shifted toward 1730 cm?1, due to a decrease in crystallinity as confirmed by DSC. The structure of allyl‐functionalized PCL‐segmented PEU analyzed by 1H NMR, double bond content was between 0.2 and 1.2 mmol g?1. Networks were obtained by UV‐initiated radical copolymerization of allyl‐functionalized PEUs and HEMA. The effects of PCL concentration and molar mass on their thermomechanical and thermal properties were analyzed. Particular damping properties were obtained. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41295.  相似文献   

13.
A new naphthalene‐ring‐containing bis(ester–amine), 1,5‐bis(3‐aminobenzoyloxy)naphthalene, was prepared from the condensation of 1,5‐dihydroxynaphthalene with 3‐nitrobenzoyl chloride followed by catalytic hydrogenation. A series of novel naphthalene‐containing poly(ester–amide)s was synthesized by direct phosphorylation polyamidation from this bis(ester–amine) with various aromatic dicarboxylic acids. The polymers were produced in high yields and had moderate inherent viscosities of 0.47–0.81 dL g?1. The poly(ester–amide) derived from terephthalic acid was semicrystalline and showed less solubility. Other polymers derived from less rigid and symmetrical diacids were amorphous and readily soluble in most polar organic solvents and could be solution‐cast into transparent, flexible and tough films with good mechanical properties. The amorphous poly(ester–amide)s displayed well‐defined glass transition temperatures of between 179 and 225 °C from differential scanning calorimetry and softening temperatures of between 178 and 211 °C from thermomechanical analysis. These poly(ester–amide)s did not show significant decomposition below 400 °C in nitrogen or air. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
To strengthen the role of polymer bridging during the flocculation process and thus raise the speed of decolorizing the dye‐containing wastewaters, β‐cyclodextrin–acrylamide–[2‐(Acryloyloxy)ethyl] trimethyl ammonium chloride copolymer (poly[AM(β‐CD)‐AETAC]) with relatively high intrinsic viscosity (84.3 mL g?1) and cationicity (24.5%) was prepared by solution polymerization. The successful preparation of copolymer was demonstrated by FT‐IR and 1H‐NMR characterizations. Its excellent decolorization performances as a new flocculant were evaluated with the C.I. reactive orange 5 (RO 5) and C.I. reactive blue 19 (RB 19) solutions using a jar test method. Both the nature of anionic dyes and the pH of dye solutions influence the decolorization effectiveness. For both the RB 19 and RO 5 solutions (0.10 g L?1), it can be rapidly decolorized in a wide range of pH (2–7) and flocculant concentration (0.12–0.26 g L?1). For the given dye/flocculant solution system, both charge neutralization and polymer bridging contribute to the decolorization mechanism. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 39940.  相似文献   

15.
New, thermally stable polyimides and a poly(amide‐imide) containing a 1,3,4‐oxadiazole‐2‐pyridyl pendant group based on 2‐[5‐(3,5‐diaminophenyl)‐1,3,4‐oxadiazole‐2‐yl]pyridine were synthesized. The synthesis and characterization of the model compound 2‐{5‐[(3,5‐bistrimellitimido)phenyl]‐1,3,4‐oxadiazole‐2‐yl}pyridine (DIDA) were also investigated, and DIDA was used in the preparation of the poly(amide‐imide) in an ionic liquid, 1‐butyl‐3‐methylimidazolium bromide, as a polymerization solvent. The polymers were characterized by separating and characterizing the poly(amic acid) intermediates using infrared and elemental analyses. The prepared polymers were soluble in polar and aprotic solvents, such as dimethylformamide, dimethylsulfoxide, N‐methyl‐2‐pyrrolidone and dimethylacetamide. Thermal behaviour of the polymers was studied using thermogravimetric analysis and differential scanning calorimetry. The inherent viscosities of the polyimide and poly(amide‐imide) solutions were in the range 0.34–0.85 dL g?1 (in concentrated sulfuric acid with a concentration of 0.125 g dL?1 at 25 ± 0.5 °C). The removal of Co(II) from aqueous solutions was performed using one of the polyimides. It was found that this polymer had a maximum adsorption capacity and efficiency at pH = 10.0. Copyright © 2012 Society of Chemical Industry  相似文献   

16.
Supermacroporous poly(2‐hydroxyethyl methacrylate) [poly(HEMA)]‐based monolithic cryogel column was prepared by radical cryocopolymerization of HEMA with N‐methacryloyl‐L ‐histidine methyl ester (MAH) as functional comonomer and N,N′‐methylene‐bisacrylamide (MBAAm) as crosslinker directly in a plastic syringe for affinity purification of lysozyme from chicken egg white. The monolithic cryogel containing a continuous polymeric matrix having interconnected pores of 10–50 μm size was loaded with Zn2+ ions to form the metal chelate with poly(HEMA‐MAH) cryogel. Poly(HEMA‐MAH) cryogel was characterized by swelling studies, FTIR, scanning electron microscopy, and elemental analysis. The equilibrium swelling degree of the poly(HEMA‐MAH) monolithic cryogel was 5.62 g H2O/g cryogel. Poly(HEMA‐MAH) cryogel containing 45.8 μmol MAH/g was used in the adsorption/desorption of lysozyme from aqueous solutions. The nonspecific adsorption of lysozyme was very low (7.5 mg/g). The maximum amount of lysozyme adsorption from aqueous solution in phosphate buffer was 209 mg/g at pH 7.0. It was observed that lysozyme could be repeatedly adsorbed and desorbed with the poly(HEMA‐MAH) cyogel without significant loss of adsorption capacity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Amphiphilic triblock copolymers composed of poly(p‐dioxanone) (PPDO) and poly(ethylene glycol) (PEG) were synthesized by ring opening polymerization of PDO initiated through dihydroxyl‐terminated PEG in the presence of stannous 2‐ethylhexanoate [Sn(oct)2] as a catalyst. Polymeric nanoparticles were prepared in an aqueous medium (triple distilled water and phosphate buffer pH 7.4) by cosolvent evaporation technique at room temperature (25°C). Stability of nanoparticles was significantly enough in triple distilled water when compared with the phosphate buffer. Core‐shell geometry of polymeric nanoparticles was characterized by 1H‐NMR spectroscopy and further confirmed by spectrophotometric analysis using pyrene as a probe. Variation in physicochemical characteristics of polymeric nanoparticles with the fraction of PPDO was investigated through the analysis of microscopic, spectroscopic, and light scattering techniques. Critical micelle concentration of polymer in triple distilled water decreased from 2.3 × 10?3 to 4.7 × 10?3. Atomic force microscopic observation revealed that polymeric nanoparticles were spherical and uniform with smooth textured of around 50–68 nm diameter. Dynamic light scattering and electrophoretic light scattering measurements showed a mono‐disperse size distribution of around 113–171 nm hydrodynamic diameters and negative zeta (ζ)‐potential (?4.00 to ?5.87 mV), respectively. The investigation showed a significant effect of polymeric composition on the physicochemical characteristic of polymeric nanoparticles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2695–2702, 2007  相似文献   

18.
The copolymer poly(vinylidene fluoride)‐graft‐poly(4‐vinylpyridine) (PVDF‐g‐P4VP) was prepared through the graft copolymerization of poly(vinylidene fluoride) with 4‐vinylpyridine. Through the blending of the PVDF‐g‐P4VP copolymer with poly(N‐isopropylacrylamide) (PNIPAm) in an N‐methyl‐2‐pyrrolidone solution, PVDF‐g‐P4VP/PNIPAm membranes were fabricated by phase inversion in aqueous media. Elemental analyses indicated that the blend concentration of PNIPAm in the blend membranes increased with an increase in the blend ratio used in the casting solution. Scanning electron microscopy revealed that the membrane surface tended to corrugate at a low PNIPAm concentration and transformed into a smooth morphology at a high PNIPAm concentration. The surface morphology and pore size distribution of the microfiltration membranes could be regulated by the blend concentration of the casting solution, temperature, pH, and ionic strength of the coagulation bath. X‐ray photoelectron spectroscopy revealed a significant enrichment of PNIPAm on the membrane surface. The flux of aqueous solutions through the blend membranes exhibited a pH‐ and temperature‐dependent behavior. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4089–4097, 2006  相似文献   

19.
The copolymer of acrylamide (AM) and 2‐acrylamido‐2‐methyl‐1‐propane sulfonate (AMPS) was synthesized through the free radical dispersion polymerization in an aqueous solution of ammonium sulfate and in the presence of poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonate) as stabilizer. The average particle size of the copolymer ranged from 1 to 4 μm, and the molecular weight was from 2.0 × 106 to 7.0 × 106 g mol?1. By analyzing apparent viscosity and particle size, the swelling property of the dispersion copolymer was studied. When the dispersion was diluted with salt water in which the ammonium sulfate concentration kept equal with that of the original dispersion, particle size and particle size distribution of the diluted dispersion changed a little, compared with that of the original dispersion. While diluted with deionized water, particle size and particle size distribution could expand several times. The effects of varying concentrations of the stabilizer, the monomer, the salt and the initiator on particle size, and molecular weight of the copolymer were investigated, respectively. The reaction conditions for preparing stable dispersion were concentrations of 20–28% of the salt, 6–14% of monomers, and 1.8–2.7% of the stabilizer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:2379–2385, 2006  相似文献   

20.
A cationic poly(methyl iodide quaternized styrene–N,N‐dimethylaminopropylmaleamidic acid) copolymer was synthesized through amidoacidification reaction of styrene‐maleic anhydride copolymer with N,N‐dimethylaminopropylamine (ring‐opening reaction). Its properties in various aqueous salt solutions and pH solutions were studied by measurements of reduced viscosity and intrinsic viscosity. The results indicated that the reduced viscosity and intrinsic viscosity of this cationic polyelectrolyte were related to the type and concentration of the added salts and the results also showed a contrary tendency in some salts with monovalent acid groups to polyelectrolyte. At the same time, some salt ions were observed to strongly attract the quaternary ammonium group of the cationic polymeric side chain and resulted in agglomeration of the polymers. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1619–1626, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号