首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study is to investigate the effect of masonry infills on the seismic performance of low‐rise reinforced concrete (RC) frames with non‐seismic detailing. For this purpose, a 2‐bay 3‐storey masonry‐infilled RC frame was selected and a 1 : 5 scale model was constructed according to the Korean practice of non‐seismic detailing and the similitude law. Then, a series of earthquake simulation tests and a pushover test were performed on this model. When the results of these tests are compared with those in the case of the bare frame, it can be recognized that the masonry infills contribute to the large increase in the stiffness and strength of the global structure whereas they also accompany the increase of earthquake inertia forces. The failure mode of the masonry‐infilled frame was that of shear failure due to the bed‐joint sliding of the masonry infills while that of the bare frame appeared to be the soft‐storey plastic mechanism at the first storey. However, it is judged that the masonry infills can be beneficial to the seismic performance of the structure since the amount of the increase in strength appears to be greater than that in the induced earthquake inertia forces while the deformation capacity of the global structure remains almost the same regardless of the presence of the masonry infills. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Masonry buildings are primarily constructed out of bricks and mortar which become discrete pieces and cannot sustain horizontal forces created by a strong earthquake.The collapse of masonry walls may cause significant human casualties and economic losses.To maintain their integrity,several methods have been developed to retrofit existing masonry buildings,such as the constructional RC frame which has been extensively used in China.In this study,a new method using precast steel reinforced concrete(PSRC)panels is developed.To demonstrate its effectiveness,numerical studies are conducted to investigate and compare the collapse behavior of a structure without retrofitting,retrofitted with a constructional RC frame,and retrofitted with external PSRC walls(PSRCW).Sophisticated finite element models(FEM)were developed and nonlinear time history analyses were carried out.The results show that the existing masonry building is severely damaged under occasional earthquakes,and totally collapsed under rare earthquakes.Both retrofitting techniques improve the seismic performance of existing masonry buildings.However,it is found that several occasional earthquakes caused collapse or partial collapse of the building retrofitted with the constructional RC frame,while the one retrofitted by the proposed PSRC wall system survives even under rare earthquakes.The effectiveness of the proposed retrofitting method on existing masonry buildings is thus fully demonstrated.  相似文献   

3.
Presence of irregularities in reinforced concrete (RC) buildings increases seismic vulnerability. During severe seismic shaking, such buildings may suffer disproportionate damage or even collapse that can be minimized by increasing robustness. Robustness is a desirable property of structural systems that can mitigate susceptible buildings to disproportionate collapse. In this paper, the effects of vertical irregularity and thickness of unreinforced masonry infill on the robustness of a six‐story three‐bay RC frame are quantified. Nonlinear static analysis of the frame is performed, and parametric study is undertaken by considering two parameters: absence of masonry infill at different floors (i.e., vertical irregularities) and infill thickness. Robustness has been quantified in terms of stiffness, base shear, ductility, and energy dissipation capacity of the frame. It was observed that the infill thickness and vertical irregularity have significant influence on the response of RC frame. The response surface method is used to develop a predictive equation for robustness as a function of the two parameters. The predictive equation is validated further using 12 randomly selected computer simulations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A displacement-based design procedure is proposed for proportioning hysteretic damped braces (HYDBs) in order to attain, for a specific level of seismic intensity, a designated performance level of a reinforced concrete (r.c.) in-elevation irregular framed building which has to be retrofitted. To check the effectiveness and reliability of the design procedure, a numerical investigation is carried out with reference to a six-storey r.c. framed building, which, originally designed according to an old Italian seismic code (1996) for a medium-risk zone, has to be retrofitted by inserting of HYDBs to attain performance levels imposed by the current Italian code (NTC08) in a high-risk zone. To simulate a vertical irregularity, a change of use of the first two floors, from residential to office, is also supposed; moreover, masonry infill walls, regularly distributed along the perimeter, are substituted with glass windows on these floors. Nonlinear dynamic analyses of unbraced (UF), infilled (IF) and damped braced infilled (DBIF) frames are carried out considering sets of artificially generated and real ground motions, whose response spectra match those adopted by NTC08 for different performance levels. To this end, r.c. frame members are idealized by a two-component model, assuming a bilinear moment–curvature law whose ultimate bending moment depends on the axial load, while the response of an HYDB is idealized by a bilinear law, to prevent buckling. Finally, masonry infills are represented as equivalent diagonal struts, reacting only in compression, with an elastic–brittle linear law.  相似文献   

5.
张家广  吴斌  梅洋 《地震学刊》2014,(5):637-642
提出了一种既有钢筋混凝土框架结构的抗震加固方法,该法采用防屈曲支撑提高框架结构体系的水平承载力和耗能能力,利用外包钢进一步提高柱子的抗弯和抗剪承载力。采用开源有限元程序OpenSees,分别建立空钢筋混凝土框架和防屈曲支撑加固钢筋混凝土框架的分析模型,对2榀钢筋混凝土框架的抗震性能进行模拟。防屈曲支撑采用了弹塑性桁架单元模型,加固框架柱混凝土考虑了外包钢的约束作用。将分析结果与拟静力试验结果进行比较,以检验分析模型的准确性,以及研究防屈曲支撑和外包钢对混凝土框架抗震性能的影响。分析结果表明,数值模拟与试验结果吻合较好,验证了基于OpenSees建立的数值模型的准确性;外包钢有效改善了框架柱的抗弯承载力和变形能力;防屈曲支撑显著提高了加固框架体系的水平刚度、水平承载力和耗能能力。  相似文献   

6.
This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace,termed glass-fiber-reinforced-polymer(GFRP)-tube-confined-concrete composite brace,is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation.Together with a contribution from the GFRP-tube confined concrete,the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting.An analysis model is established and implemented in a general finite element analysis program-OpenSees,for simulating the load-displacement behavior of the composite brace.Using this model,a parametric study of the hysteretic behavior(energy dissipation,stiffness,ductility and strength)of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered.To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete(RC)frame structure was retrofitted with the composite braces.Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records.The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand.  相似文献   

7.
Observation of damage caused by the recent Abruzzo earthquake on April 6th 2009 showed how local interaction between infills and RC structures can lead to soft‐storey mechanisms and brittle collapses. Results of the present case study are based on observed damage caused by the earthquake in the zone of Pettino. Analytical model based on simulated design procedure was built up and time history analyses were employed to verify the causes of the structural collapse, as highlighted by observed damage. This failure mechanism was investigated taking into consideration all components of the ground motion. Nonlinear behavior of brick masonry infills was taken into account and two parametric hypotheses for infill mechanical properties were considered, given the uncertainties that typically characterize these nonstructural elements. Nonlinear modeling of infills was made by a three‐strut macro‐model aimed at considering both local and global interaction between RC frame and infills. Seismic input was characterized by the real signal registered during the mainshock near the case‐study structure. Different shear capacity models were considered in the assessment. Analytical results seem to confirm with good approximation the likely collapse scenario that damage observation highlighted; the lack of proper detailing in the columns made the local interaction between infills and RC columns and the strong vertical component of the ground motion to be the main causes of the brittle failure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Seismic fragility of lightly reinforced concrete frames with masonry infills is assessed through numerical simulations considering uncertainty in ground motion and building materials. To achieve this aim, a numerical model of the components is developed, a rational approach to proportion and locate individual struts in the equivalent three‐strut model is proposed, and an explicit nonlinear column shear response model accounting for the infill–column interaction and soft‐story mechanism is employed. The proposed numerical model is used to (1) generate probabilistic seismic demand models accounting for a wide range of ground motion intensities with different frequency content and (2) determine limit state models obtained from nonlinear pushover analysis and incremental dynamic analysis. Using the demand and limit state model, fragility curves for the masonry‐infilled frames are developed to investigate the impact of various infill properties on the frame vulnerability. It is observed that the beneficial effect of the masonry infill diminishes at more severe limit states because of the interaction with the boundary frame. In some cases, this effect almost vanishes or switches to an adverse effect beyond a threshold of ground motion intensities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
为研究填充墙对底层框架多层砌体房屋地震反应的影响,以典型的填充墙-底层框架多层砌体房屋为基础,建立有限元计算模型并进行了弹塑性动力时程分析。根据不同模型的计算结果以及填充墙的刚度和强度,分析了填充墙对底层框架多层砌体房屋自振周期、地震作用下房屋整体变形、底层框架的损伤以及填充墙与底层框架相互作用的影响。计算结果表明:填充墙对房屋整体地震反应产生明显影响,其影响不能忽略。在上部砌体结构质量和刚度不变的情况下,结构自振周期随着填充墙刚度的增加而降低;随着填充墙与底层框架之间连接作用的增强,结构整体的变形减小,底层框架的损伤增大。当填充墙与底层框架之间采用弱连接时,采用强度较高的填充墙可以提高结构整体的变形能力,从而提高结构整体的抗震能力。  相似文献   

10.
A methodology is introduced to assess the post‐earthquake structural safety of damaged buildings using a quantitative relationship between observable structural component damage and the change in collapse vulnerability. The proposed framework integrates component‐level damage simulation, virtual inspection, and structural collapse performance assessment. Engineering demand parameters from nonlinear response history analyses are used in conjunction with component‐level damage simulation to generate multiple realizations of damage to key structural elements. Triggering damage state ratios, which describe the fraction of components within a damage state that results in an unsafe placard assignment, are explicitly linked to the increased collapse vulnerability of the damaged building. A case study is presented in which the framework is applied to a 4‐story reinforced concrete frame building with masonry infills. The results show that when subjected to maximum considered earthquake level ground motions, the probability of experiencing enough structural damage to trigger an unsafe placard, leading to building closure, is more than 2 orders of magnitude higher than the risk of collapse.  相似文献   

11.
This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake.  相似文献   

12.
A wide number of experimental studies conducted in latest years pointed out the high influence of the mechanical properties of masonry units and mortar bed joints on lateral strength and stiffness of masonry panels. This feature significantly modifies the global response of infilled frames under seismic actions as well as the local interaction phenomena. Despite a wide investigation on the influence of the infills on global behaviour of reinforced concrete (RC) frames has already been provided, different features characterizing the seismic performances of buildings suggest the need of accurately evaluating local interaction phenomena as well as the influence of the panel on specific and relevant aspects, as the accelerations transferred to non-structural components. This study provides a parametrical analysis of the influence of shear strength and elastic modulus of masonry infills on the seismic behaviour of RC frames originally designed for gravity loads. Regular buildings with different height were analysed using the Incremental Dynamic Analysis in order to provide fragility curves, investigate on the collapse mechanisms and define the floor spectra depending on the properties of the infills. Results obtained pointed out the high influence of the considered parameters on the fragility of existing RC frames, often characterized by inadequate transversal reinforcement of columns, which may lead to brittle failure due to the interaction with the infills. Floor response spectra are also significantly affected by the influence of masonry infills both in terms of shape and maximum spectral accelerations. Lastly, on the basis of the observed failure mechanisms, a parameter defining the ductility of the frames depending on the properties of the infills was also provided (Capacity Design Factor). The correlation between the mechanical properties of the infills and this parameter suggests its reliability in the simplified vulnerability analysis of existing buildings as well as for the design of new buildings.  相似文献   

13.
Eight half‐scale brick masonry walls were tested to study two important aspects of confined masonry (CM) walls related to its seismic behavior under in‐plane and out‐of‐plane loads. Four solid wall specimens tested to investigate the role of type of interface between the masonry and tie‐columns, such as toothing varying from none to every course. The other four specimens with openings were tested to study the effectiveness of various strengthening options around opening to mitigate their negative influence. In the set of four walls, one wall was infilled frame while the other three were CM walls of different configurations. The experimental results were further used to determine the accuracy of various existing models in predicting the in‐plane response quantities of CM walls. Confined masonry walls maintained structural integrity even when severely damaged and performed much better than infill frames. No significant effect of toothing details was noticed although toothing at every brick course was preferred for better post‐peak response. For perforated walls, provision of vertical elements along with continuous horizontal bands around openings was more effective in improving the overall response. Several empirical and semi‐empirical equations are available to estimate the lateral strength and stiffness of CM walls, but those including the contribution of longitudinal reinforcement in tie‐columns provided better predictions. The available equations along with reduction factors proposed for infills could not provide good estimates of strength and stiffness for perforated CM walls. However, recently proposed relations correlating strength/stiffness with the degree of confinement provided reasonable predictions for all wall specimens. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Special concentrically braced frames (SCBFs) are commonly used for seismic design of buildings. Their large elastic stiffness and strength efficiently sustains the seismic demands during smaller, more frequent earthquakes. During large, infrequent earthquakes, SCBFs exhibit highly nonlinear behavior due to brace buckling and yielding and the inelastic behavior induced by secondary deformation of the framing system. These response modes reduce the system demands relative to an elastic system without supplemental damping using a response modification coefficient, commonly termed the R factor. More recently, procedures put forth in FEMAP695 have been made to quantify the R factor through a formalized procedure that accounts for collapse potential. The primary objective of the research in this paper was to evaluate the approach for SCBFs. An improved model for SCBFs that permits simulation of brace fracture was used to conduct response history analyses. A series of three‐story, nine‐story and 20‐story SCBFs were designed and evaluated. Initially, the FEMAP695 method was conducted to estimate collapse and the corresponding R factor. An alternate procedure for scaling the multiple acceleration records to the seismic design hazard was also evaluated. The results show significant variation between the two methods. Of the three variations of buildings studied, the largest vulnerability was identified for the three‐story building. To achieve a consistent margin of safety against collapse, a significantly lower R factor is required for the low‐rise SCBFs (three‐story), whereas the mid‐rise and high‐rise SCBFs (nine‐story and 20‐story) may continue to use the current value of 6, as provided in ASCE‐07. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This study describes the seismic performance of an existing five storey reinforced concrete building which represents the typical properties of low-rise non-ductile buildings in Turkey. The effectiveness of shear walls and the steel bracings in retrofitting the building was examined through nonlinear static and dynamic analyses. By using the nonlinear static analysis, retrofitted buildings seismic performances under lateral seismic load were compared with each other. Moreover, the performance points and response levels of the existing and retrofitting cases were determined by way of the capacity-spectrum method described in ATC-40 (1996). For the nonlinear dynamic analysis the records were selected torepresent wide ranges of duration and frequency content. Considering the change in the stiffness and the energy dissipation capacities, the performance of the existing and retrofitted buildings were evaluated in terms of story drifts and damage states. It was found that each earthquake record exhibited its own peculiarities, dictated by frequency content, duration, sequence of peaks and their amplitude. The seismic performance of retrofitted buildings resulted in lower displacements and higher energy dissipation capacity depending mainly on the properties of the ground motions and the retrofitting strategies. Moreover, severe structural damage (irreparable or collapse) was observed for the existing building. However, buildings with retrofit alternatives exhibited lower damage levels changing from no damage to irreparable damage states.  相似文献   

16.
Strength and stiffness reduction factors for infilled frames with openings   总被引:1,自引:0,他引:1  
Framed structures are usually infilled with masonry walls. They may cause a significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the system. On the other hand, irregular arrangements of the masonry panels may lead to the concentration of damage in some regions, with negative effects; for example soft story mechanisms and shear failures in short columns. Therefore, the presence of infill walls should not be neglected, especially in regions of moderate and high seismicity. To this aim, simple models are available for solid infills walls, such as the diagonal no-tension strut model, while infilled frames with openings have not been adequately investigated. In this study, the effect of openings on the strength and stiffness of infilled frames is investigated by means of about 150 experimental and numerical tests. The main parameters involved are identified and a simple model to take into account the openings in the infills is developed and compared with other models proposed by different researchers. The model, which is based on the use of strength and stiffness reduction factors, takes into account the opening dimensions and presence of reinforcing elements around the opening. An example of an application of the proposed reduction factors is also presented.  相似文献   

17.
This paper describes shaking table tests of three eight-story building models: all are masonry structures in the upper stories, with or without frame-shear walls of one- or two- stories at the bottom. The test results of damage characteristics and seismic responses are provided and compared. Then, nonlinear response analyses are conducted to examine the reliability of the dynamic analysis. Finally, many nonlinear response analyses are performed and it is concluded that for relatively hard sites under a certain lateral stiffness ratio (I.e., the ratio of the stiffness of the lowest upper masonry story to that of the frame-shear wall story), the masonry structure with one-story frame-shear wall at the bottom performs better than a structure built entirely of masonry, and a masonry structure with frame-shear wall of two stories performs better than with one-story frame-shear wall. In relatively soft soil conditions, all three structures have similar performane. In addition, some suggestions that could be helpful for design ofmasomy structures with ground story of frame-shear wall structure in seismic intensity region VII, such as the appropriate lateral stiffness ratio, shear force increase factor of the frame-shear wall story, and permissible maximum height of the building, are proposed.  相似文献   

18.
杨建华  叶郁 《地震工程学报》2019,41(5):1141-1146,1176
为实现多层砖房底部两层框架结构的加固,需要研究其抗震变形性能。以某底部两层框架、上部四层砖房建筑为对象,通过STRAND7有限元软件构建有限元计算模型,考虑水平荷载与垂直荷载,深入分析多层砖房底部两层框架抗震变形性能。仿真结果表明,建筑结构振型受结构横向楼板刚度的影响较显著,不同振型的频率变化中,X向1阶频率与Y向2阶频率变化最快,楼板平面内弯曲频率变化最慢;整体结构在X向与Y向分别呈现线性剪切变形和弯剪变形,Y向上由于填充墙发挥抗震墙功能,底部两层框架变形较小;在7度多遇地震影响下,底部两层结构中第二层楼板变形较第一层严重,多层砖房底部两层框架建筑结构处于弹性工作状态。  相似文献   

19.
当前方法采用伸臂桁架加固建筑结构时,未考虑建筑结构的屈曲约束支撑力的影响,伸臂桁架与建筑结构的连接不牢固,导致其对建筑结构的抗震加固性能较差。故此,深入分析建筑结构的屈曲约束支撑对其抗震加固性能的影响,设计建筑结构抗震加固方案,利用高强螺栓节点经由连接钢板实现屈曲约束支撑与建筑结构的铰接固定。分别从支撑变形同建筑结构层间位移的关系、建筑结构支撑承载力、多遇地震影响下屈曲约束支撑框架的位移验算,以及罕遇地震影响下屈曲约束支撑的弹塑性位移验算方面,分析屈曲约束支撑对建筑结构抗震加固性能影响。经实验分析得出,建筑结构加入屈曲约束支撑后第一扭转周期同第一平动周期的比值降低0.14,X、Y两个方向的砌体墙同建筑结构的刚度比值降低6.9、8.0,最大顶点位移值降低15.4 mm、29.3 mm,抗震加固性能大大提高。  相似文献   

20.
Recent earthquakes have confirmed the role played by infills in the seismic response of reinforced concrete buildings. The control and limitation of damage to such nonstructural elements is a key issue in performance‐based earthquake engineering. The present work is focused on modeling and analysis of damage to infill panels, and, in particular, it is aimed towards linear analysis procedures for assessing the damage limitation limit state of infilled reinforced concrete frames. First, code provisions on infill modeling and acceptance criteria at the damage limitation limit state are reviewed. Literature contributions on damage to unreinforced masonry infill panels and corresponding displacement capacity are reported and discussed. Two procedures are then proposed aiming at a twofold goal: (i) the determination of ‘equivalent’ interstory drift ratio limits for a bare frame model and (ii) the estimation of the stiffness of equivalent struts representing infill walls in a linear model. These two quantities are determined such that a linear model ensures a reliable estimation of seismic capacity at the damage limitation limit state, providing the same intensity level as that obtained from nonlinear analyses carried out on structural models with infills. Finally, the proposed procedures are applied to four‐story and eight‐story case study‐infilled frames, designed for seismic loads according to current technical codes. The results of these application examples are presented and discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号