首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 292 毫秒
1.
The purpose of this study was to improve the physical properties and to expand the application range of starch‐based blend films added nano‐sized TiO2/poly(methyl methacrylate‐co‐acrylamide) (PMMA‐co‐AM). Starch‐based blend films were prepared by using corn starch, polyvinyl alcohol (PVA), nano‐sized PMMA‐co‐AM, nano‐sized TiO2/PMMA‐co‐AM particles, and additives, i.e., glycerol (GL) and citric acid (CA). Nano‐sized PMMA‐co‐AM was synthesized by emulsion polymerization and TiO2 nanoparticles were also prepared by using sol–gel method. Nano‐sized TiO2/PMMA‐co‐AM particles were synthesized by wet milling for 48 h. The morphology and crystallinity of TiO2, nano‐sized PMMA‐co‐AM and TiO2/PMMA‐co‐AM particles were investigated by using the scanning electron microscope (SEM) and X‐ray diffractometer (XRD). In addition, the functional groups of the TiO2/PMMA‐co‐AM particles were characterized by IR spectrophotometry (FTIR). The physical properties such as tensile strength (TS), elongation at break (%E), degree of swelling (DS), and solubility (S) of starch‐based films were evaluated. It was found that the adding of nano‐sized particles can greatly improve the physical properties of the prepared films. The photocatalytic degradability of starch/PVA/nano‐sized TiO2/PMMA‐co‐AM composite films was evaluated using methylene blue (MB) and acetaldehyde (ATA) as photodegradation target under UV and visible light. The degree of decomposition (C/C0) of MB and ATA for the films containing TiO2 and CA was 0.506 and 0.088 under UV light irradiation and 0.586 (MB) and 0.631 (ATA) under visible light irradiation, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
A novel Nano/submicrofiber catalyst was prepared via electrospinning technology from poly (vinyl pyrrolidone) (PVP) and nano‐TiO2. First, nano‐TiO2 particles were added into the mixture of ethanol and deionized water, the mass ratio of ethanol and deionized water was 1 : 1, the TiO2 suspension was obtained after 1 h with ultrasonic treatment and centrifugal effect, Then PVP was added into the above‐mentioned suspension and the content of PVP in the sol was 28%. The TiO2/PVP solution was electrospun with different voltage. The effects of the content of TiO2 and electrospinning voltage on diameter of nano/submicrofiber were studied. The nano/submicrofiber catalyst was characterized by scanning electron microscopy, transmission electron microcopy, X‐ray diffraction, and Fourier transform infrared. The results show that the diameter of nano/submicrofiber increases with an increase of the content of nano‐TiO2 and decreases with the increase of electrospinning voltage. The analytical result showed that the nano‐TiO2 particles were well dispersed in the matrix of PVP, moreover, the crystal type of nano‐TiO2 was a mixture of anatase and rutile and the diameter of nano‐TiO2 particles in the nano/submicrofiber is in the range of 20–60 nm and the nano‐TiO2 particle was monodisperse, and the nano‐TiO2 particle and PVP molecule was connected by a hydrogen bonding. This nano/submicrofiber catalyst has a high efficiency on degradation on CH2O. 56.8 percent of CH2O was degraded under ultraviolet radiation in 80 min when the content of nano‐TiO2 is 20% in nano/submicrofibers. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
High‐impact polystyrene (HIPS)/nano‐TiO2 nanocomposites were prepared by surface pretreatment of nano‐TiO2 with special structure dispersing agent (TAS) and master batch manufacturing technology. The results show that when the nano‐TiO2 content is 2%, the notched impact strength, tensile strength, and elastic modulus of HIPS/nano‐TiO2 nanocomposites increased to a maximum. This result indicates that nano‐TiO2 has both toughening and reinforcing effects on HIPS. The heat‐deflection temperature and flame‐retardance of HIPS/nano‐TiO2 nanocomposites are also obviously improved as the nano‐TiO2 content is increased. The nanocomposites manufactured by the two‐step method have better mechanical properties than that made by a one‐step method. HIPS/nano‐TiO2 nanocomposites are also non‐Newtonian and pseudoplastic fluids. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 381–385, 2003  相似文献   

4.
A single‐step deposition of cobalt‐doped zinc oxide (Co‐ZnO) thin film nano‐composites on three different crystalline substrates, viz., Al2O3 (c‐sapphire), silicon (100) (Si), and SiO2 (quartz) is reported, using pulsed electron beam ablation (PEBA). The results indicate that the type of substrate has no effect on Co‐ZnO films stoichiometry, morphology, microstructure, and film thickness. The findings show the presence of hexagonal close‐packed metallic Co whose content increases in the films deposited on Al2O3 and Si substrates relatively to SiO2 substrate. The potential of the films as model nano‐catalysts has been evaluated in the context of the Fischer‐Tropsch (FT) process. Fuel fractions, which have been observed in FT liquid products, are rich in diesel and waxes. Specifically, Co‐ZnO/Al2O3 nano‐catalyst shows a selectivity of ~4%, 31%, and 65% towards gasoline, diesel, and waxes, respectively, while Co‐ZnO/SiO2 nano‐catalyst shows a selectivity of ~12%, 51%, and 37%, for gasoline, diesel, and waxes, respectively. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3332–3340, 2018  相似文献   

5.
A new chitosan molecular imprinted adsorbent obtained by immobilization of nano‐TiO2 on the adsorbent surface (surface‐imprinted adsorbent with nano‐TiO2) was prepared. Based on photocatalytic reaction and the surface molecular imprinting technology, this new kind of surface‐imprinted adsorbent with immobilization of nano‐TiO2 can not only adsorb template metal ions but can also degrade organic pollutants. The results showed that, after the nano‐TiO2 was immobilized on the adsorbent surface, the adsorption ability for the imprinted ion (Ni2+) of this new imprinted adsorbent immobilized with nano‐TiO2 was not affected, but the degradation ability for p‐nitrophenol (PNP) of the surface‐imprinted adsorbent with nano‐TiO2 increased three‐fold compared with that of the surface‐imprinted adsorbent without nano‐TiO2, from 23.8 to 76.1% (at an initial PNP concentration of 20 mg·dm?3). The optimal TiO2 concentration in the adsorbent preparation was 0.025 g·TiO2 g?1 adsorbent. The removal capacity for PNP reached 60.25 mg·g?1 (at 400 mg·dm?3 initial PNP concentration) under UV irradiation. The surface‐imprinted adsorbent with nano‐TiO2 can be reused for at least five cycles without decreasing the removal ability for PNP and the imprinted ion (Ni2+). Copyright © 2006 Society of Chemical Industry  相似文献   

6.
Using the freeze‐drying method, Nano‐TiO2/silk fibroin porous films were synthesized with different ratios of TiO2 to silk fibroin solution. Through scanning electron microscopy (SEM), X‐ray diffraction (XRD), thermogravimetric analysis (TGA), tensile strain, and water‐solubility tests, the structures and properties of these porous films were characterized. The SEM results indicated that the pores of the nano‐TiO2/silk fibroin porous films were uniformly distributed by the freeze‐drying method. The XRD analysis indicated that the formation of nano‐TiO2 particles might induce a conformational transition of silk fibroin from the typical Silk I to the typical Silk II structure partly with an increase in the crystallinity of the porous films. Compared with the pure silk fibroin porous films, the mechanical properties of nano‐TiO2/silk fibroin porous films were improved, and its heat transition temperature was also enhanced; however, the water‐solubility of this material was diminished. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
A sodium alginate (SA)–poly(vinyl alcohol) (PVA)–chitosan (CS) bipolar membrane (BPM) was prepared by a paste method with PVA, SA, and CS as starting materials and modified by Fe3+ and GA as a crosslinking agent. The morphology, functional groups, and physical properties of the film were studied by scanning electron microscopy, IR spectroscopy, and tensile testing, respectively. The SA–PVA–CS BPM was used as a separator in the electrolysis cell for electrogenerated ferrate(VI). The results show that the SA–PVA–CS BPM possessed reasonable physical and electrochemical properties. The SA–PVA–CS BPM not only prevented ferrate(VI) from diffusing into the cathode room but also played an important role in the supply of OH? consumed during the electrogenerated ferrate(VI) process. Compared with the traditional method of preparing ferrate(VI), electrodialysis with the BPM (SA–PVA–CS) had the further advantage of lower alkali and energy consumption. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
The purpose of this article is to investigate the effects of nano‐tianium dioxide (nano‐TiO2) on the high‐amylose starch/polyvingl alcohol (PVA) blend films prepared by a solution casting method. The results show that at the concentration of 0.6% of nano‐TiO2, the film demonstrated the best tensile strength at 9.53 MPa, and the elongation at break was noted as 49.50%. The optical transmittance of the film was decreased and the water resistance was improved with further increase of the concentration of nano‐TiO2. Using the techniques of Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and field‐emission scanning electron microscopy (SEM), the molecular and the crystal structures of the films were characterized. The results indicate that the miscibility and compatibility between high‐amylose starch and PVA were increased with the addition of nano‐TiO2 into the films due to the formation of hydrogen and C? O? Ti bonds. The antimicrobial activities of the blend films were also explored. The results show that there were inhibitory zones around the circular film disc, which is attributable to the addition of nano‐TiO2. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42339.  相似文献   

9.
Crosslinked alginate‐based nanocomposites at different SiO2 contents were prepared successfully by blending the nano‐SiO2 solution into low concentration alginate solution (0.5 wt %), with the alginate concentration increased step by step to the resulted concentration, in this course glycerol was used as plasticizer and 5 wt % CaCl2 as crosslinker. The combined effect of SiO2 content (1.5–8 wt %) on the microstructural, physical, mechanical, and optical properties of the nanocomposite films were investigated. The results showed that tensile strength and elongation was improved by about 40.33% and 89%, respectively, upon increasing the SiO2 content to 4.5 wt %. In addition, water vapor permeability and swelling degree decreased by 19% and 16% with increasing SiO2 content up to 8 and 4.5 wt %, respectively with respect to pure crosslinked alginate film. Thermogravimetric analysis also revealed that nano‐SiO2 can improve the thermal stability of sodium alginate films produced by this method. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45286.  相似文献   

10.
In this study, polyurethane (PU)/nano‐silica nancomposite foams were prepared. The effects of isocyanate index, cell size, density, and molecular weight of polyols on the sound absorption ratio of PU/nano‐silica foams were investigated. With increasing nano‐silica content, the sound absorption ratio of PU/nano‐silica foams increases over the entire frequency range investigated in this study. Decrease of isocyanate index, cell size, and increase of density leads to the increase of sound absorption ratio of PU/nano‐silica foams. PU/nano‐silica foams have a broad Tg centered around room temperature by decreasing molecular weight of polyol resulting in good sound absorbing ability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
Polyaniline/nano‐TiO2 composites with the content of nano‐TiO2 varying from 6.2 wt % to 24.1 wt % were prepared by using solid‐state synthesis method at room temperature. The structure and morphology of the composites were characterized by the Fourier transform infrared (FTIR) spectra, ultraviolet‐visible (UV–vis) absorption spectra, X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The electrochemical performances of the composites were investigated by galvanostatic charge–discharge measurement, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results from FTIR and UV–vis spectra showed that the composites displayed higher oxidation and doping degree than pure PANI. The XRD and morphological studies revealed that the inclusion of nano‐TiO2 particles hampered the crystallization of PANI chains in composites, and the composites exhibited mixed particles from free PANI particles and the nano‐TiO2 entrapped PANI particles. The galvanostatic charge–discharge measurements indicated that the PANI/nano‐TiO2 composites had higher specific capacitances than PANI. The composite with 6.2 wt % TiO2 had the highest specific capacitance among the composites. The further electrochemical tests on the composite electrode with 6.2 wt % TiO2 showed that the composite displayed an ideal capacitive behavior and good rate ability. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
在壳聚糖(CS)阴离子交换膜层中添加纳米SiO2,制备了PVA-SA/SiO2-CS双极膜(其中,PVA:聚乙烯醇;SA:海藻酸钠),并用扫描电镜、热重、电子万能试验机、接触角测定仪、J-V关系和交流阻抗谱等对其进行了表征。研究结果表明,双极膜经纳米SiO2改性后,亲水性得以提高,壳聚糖膜的接触角从104.01°下降到78.39°。膜亲水性的提高增强了膜与水分子间的作用,减弱了水的键合力,促进了中间界面层水的解离,降低了双极膜电阻压降(IR降)和槽电压,当电流密度为45 mA.cm.2时,槽电压从9.0 V下降到6.2 V。此外,添加纳米SiO2还可提高双极膜热稳定性和机械性能,双极膜的断裂伸长率从81.29%提高到87.67%,杨氏模量从30.68 MPa提高到79.59 MPa。  相似文献   

13.
Poly(vinyl alcohol)/nano‐silica (PVA/nano‐SiO2) films were prepared through extrusion blowing with the addition of water and glycerin as plasticizer. The characteristic properties of PVA/nano‐SiO2 films were investigated by differential scanning calorimetry, dynamic mechanical analysis, Haake torque rheometry, and atomic force microscopy (AFM). The results showed that the mechanical properties of PVA/nano‐SiO2 were improved dramatically. The tensile strength of the nanofilms increased from 62 MPa to 104 MPa with loading 0.3 wt % nano‐SiO2 and the tear strength was improved from 222 KN/m to 580 KN/m. The crystallinity of the films loaded with 0.4 wt. % nano‐SiO2 decreased from 32.2% to 21.0% and the AFM images indicated that the amorphous region of nanofilms increased with increasing nano‐SiO2 content. The storage modulus and loss modulus increased to two and nearly three times with 0.3 wt % nano‐SiO2 loading. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Polymer electrolyte membranes based on poly(ethylene oxide) (PEO) doped with TiO2 nanoparticles were synthesized by simple solution cast technique. Mesoporous TiO2 film was prepared by doctor‐blade method. The modified polymer membranes and the mesoporous films were characterized by SEM, TEM, AFM, ionic conductivity, and J‐V measurements. Dye‐sensitized solar cells (DSSC) have been fabricated in which PEO‐polymer electrolyte doped with and without nano‐TiO2 were sandwiched between porous TiO2 and counter electrodes. The DSSC with nano‐TiO2 doped polymer electrolyte shows better performance (1.68%) in comparison with pristine polymer electrolyte (1.07%), which is due to improved ionic conductivity value in polymer electrolyte system by nano‐TiO2 doping. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Polyaniline/nano‐titanium dioxide composites (PANI/n‐TiO2) were prepared using α‐dextrose as surfactant and ammonium per sulfate as oxidant. The PANI/n‐TiO2 composite is characterized by Fourier transform infrared spectra and confirmed the presence of benzenoid and qunoide ring structures and also formation of free ions. The transmission electron microscopy study reveals that the size of TiO2 is in the order of 7 nm where as the composite size is of the order of 13 nm; further, it is observed that the TiO2 particles are intercalated to form a core shell of PANI. The X‐ray diffraction (XRD) studies show that the monoclinic structure of the composites. ac Conductivity, permittivity, and tangent loss studies on these samples suggest that these composites may be well suited for gas sensor. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Nano‐CaCO3 was used as nano‐scale filler and poly(1,2‐propylene glycol adipate) (PPA) was used as polymeric plasticizer in flexible poly(vinyl chloride) (PVC) sheets for the partial replacement of di(2‐ethyl hexyl) phthalate (DOP) in this paper. The effect of PPA and nano‐CaCO3 on restraining DOP migration was evaluated via extraction tests. The results showed that the introduction of nano‐CaCO3 can decrease the extraction rate of DOP in the PVC matrix. The tensile strength and elongation at break of CaCO3‐1/PPA‐20/DOP‐30/PVC were similar to those of DOP‐50/PVC, and CaCO3‐1/PPA‐20/DOP‐30/PVC exhibited the superior suppression of DOP migration compared with DOP‐50/PVC. Thermogravimetry analysis (TGA) indicated that the addition of nano‐CaCO3 effectively improved the thermal stability of the nanocomposites. Therefore, the combination of PPA and nano‐CaCO3 is an effective approach to suppress the migration of DOP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Poly(vinyl alcohol) (PVA) was chosen as a controllable gelator to prepare sodium alginate (SA)‐based physically cross‐linked dual‐responsive hydrogel by three steps. First, polyvinyl acetate (PVAc) was grafted onto SA via radical copolymerization. Then, the copolymer was subsequently converted into SA‐g‐poly(vinyl alcohol) (SAPVA) by alcoholysis reaction. PVA content of SAPVA was tailored by controlling the graft percentage of PVAc, i.e. through varying the amount of vinyl acetate during copolymerization. Finally, SAPVA hydrogels were formed by freezing‐thawing cycles. The structure of the graft copolymers was verified with FTIR spectroscopy. X‐ray diffraction analysis results revealed that the crystallinity of SAPVA hydrogels depended on the PVA content of SAPVA. The swelling test showed that SAPVA hydrogels were pH‐responsive, and the swelling was reversible. SAPVA hydrogels also behaved electric‐responsive. In addition, the pH‐sensitivity of SAPVA hydrogels was able to be controlled with the composition of the hydrogels. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Polyamide1010 (PA1010) and its composite with nanometer‐sized zirconia (PA1010/nano‐ZrO2) coatings were deposited using a flame spray process. The kinetics of nonisothermal crystallization of PA1010/nano‐ZrO2 composite coatings was investigated by differential scanning calorimetry (DSC) at various cooling rates. Several different analysis methods were used to describe the process of nonisothermal crystallization. The results showed that the modified Avrami equation and Mo's treatment could describe the nonisothermal crystallization of the composite coatings very well. The nano‐ZrO2 particles have a remarkable heterogeneous nucleation effect in the PA1010 matrix. The values of halftime and Zc showed that the crystallization rate increased with increasing cooling rates for both PA1010 and PA1010/nano‐ZrO2 composite coating, but the crystallization rate of PA1010/nano‐ZrO2 composite coating was faster than that of PA1010 at given cooling rate. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
In this study, various polypropylene (PP) nanocomposites were prepared by melt blending method. The effects of different spherical nanofillers, such as 50 nm CaCO3 and 20 nm SiO2, on the linear viscoelastic property, crystallization behavior, morphology and mechanical property of the resulting PP nanocomposites were examined. Rheological study indicated that coincorporation of nano‐SiO2 and nano‐CaCO3 favored the uniform dispersion of nanoparticles in the PP matrix. Differential scanning calorimeter (DSC) and polarizing optical microscopy (POM) studies revealed that the coincorporation of SiO2 and CaCO3 nanoparticles could effectively improve PP crystallizability, which gave rise to a lower supercooling temperature (ΔT), a shorter crystallization half‐life (t1/2) and a smaller spherulite size in comparison with those nanocomposites incorporating only one type of CaCO3 or SiO2 nanoparticles. The mechanical analysis results also showed that addition of two types of nanoparticles into PP matrix gave rise to enhanced performance than the nanocomposites containing CaCO3 or SiO2 individually. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
The electrospun nanofibers emerge several advantages because of extremely high specific surface area and small pore size. This work studies the effect of PVA nanofibers diameter and nano‐sized TiO2 on optical properties as reflectivity of light and color of a nanostructure assembly consisting polyvinyl alcohol and titanium dioxide (PVA/TiO2) composite nanofibers prepared by electrospinning technique. The PVA/TiO2 composite spinning solution was prepared through incorporation of TiO2 nanoparticles as inorganic optical filler in polyvinyl alcohol (PVA) solution as an organic substrate using the ultrasonication method. The morphological and optical properties of collected composites nanofibers were highlighted using scanning electron microscopy (SEM) and reflective spectrophotometer (RS). The reflectance spectra indicated the less reflectance and lightness of composite with higher nanofiber diameter. Also, the reflectance and lightness of nanofibers decreased with increasing nano‐TiO2 concentration. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号