首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The olive oil content in phenolic compounds depends on the variety of the fruit used for its extraction as well as on the predominant climate conditions in the tree cultivation area. Here, we report on the characterization of virgin olive oil samples obtained from fruits of the main Tunisian olive cultivars Chemlali and Chétoui, grown in three different Tunisian locations, Zaghouan (North), Sousse (Center) and Sfax (South). Chétoui olive oil samples obtained from fruits of olive trees cultivated in Zaghouan and Chemlali olive oil samples obtained from fruits of olive trees cultivated in Sousse were found to have a higher mean total phenol content (1004 and 330 mg/kg, respectively). Olive oil samples obtained from fruits of both cultivars had different phenolic profiles and a higher content in 3,4‐DHPEA‐EDA when the olive trees were cultivated in Zaghouan. Both olive cultivars were found to have different responses to environmental conditions. Chétoui olive oil showed decreased oxidative stability when the fruits were obtained from olive trees cultivated in the center of Tunisia (34.8 h) and in Sfax (16.17 h). Furthermore, statistical data showed that the phenolic composition and oxidative stability of Chétoui olive oil varied more by location than those of Chemlali olive oils.  相似文献   

2.
Legal regulations are set for protecting claims regarding olive oil geographical denomination. When meteorological or agroecological factors similarly affect different regions, the origin identification is a challenging task. This study demonstrated the use of a potentiometric electronic tongue coupled with linear discriminant analysis to discriminate the geographical origin of monovarietal Tunisian olive oil produced from local cv Chemlali (Kairouan, Sidi Bouzid or Sfax regions) and cv Sahli (Kairouan, Mahdia or Sousse regions). The potentiometric fingerprints of 12 or eight lipid sensors (for Chemlali and Sahli, respectively), selected using a simulated annealing meta-heuristic algorithm, allowed the correct prediction (repeated K-fold cross-validation) of the geographic production region with sensitivities of 92 ± 7% (Chemlali) and 97 ± 8% (Sahli). It was also confirmed the electronic tongue capability to classify Tunisian olive oil according to olive cultivar or quality grade. The results indicated the possible use of potentiometric fingerprints as a promising innovative strategy for olive oil analysis allowing assessing geographical origin, olive cultivar and quality grade, which are key factors determining olive oil price and consumers’ preference.  相似文献   

3.
Herein, the influence of the ripeness of Tunisian Sayali olives on the chemical composition and sensory quality of virgin olive oils have been investigated, with a particular focus on minor metabolites. Towards this end, five samples (S1–S5) were produced from fruits at increasing stages of maturity and then analyzed. Quality indices (free acidity, peroxide value, specific extinction in UV, sensory characteristics) and composition in major (fatty acids) and minor compounds (squalene, pigments, tocopherols, phenolic compounds, volatile compounds), as well as oxidative stability, were evaluated. Significant variations for the most analytical parameters of Sayali samples were demonstrated, highlighting the impact of stage of ripening. In particular, at later stages of ripening a decreased tendency was seen in minor compounds that are able to inhibit lipid oxidation (tocopherols, carotenoids, squalene and polar phenolic compounds) and, as a consequence, in the oxidative stability value. Moreover, a higher intensity of positive sensory notes (fruity, bitter and pungent) characteristic of extra virgin olive oil were found for samples produced with less ripe olives. Finally, a deeper knowledge of the influence of this factor would be helpful to correctly manage the optimal fruit harvesting time for producers for this variety and to improve the marketing of extra virgin olive oils by using a promising secondary variety (with a high oxidative stability and an interesting fatty acid composition).  相似文献   

4.
Olive ripening, climate conditions, geographic area, and cultivar may influence the composition and quality of olive oils. This study aims to identify the optimal harvesting period for qualitative production of three cultivars grown in Calabria. The obtained results show that all the olive oils produced in October are classified as extra virgin, and then their quality decreases gradually, in particular in Grossa di Gerace olives, grown in a typical hot‐dry area. Oleic acid content in the oil is related to the temperature exposition during fruit growth. Considering oil yield and quality, the optimal harvesting times are identified in the first part of the month of October (142–158 days after full bloom) for Grossa di Gerace olive and in the second and last week of October (142–165 days after full bloom) for Ottobratica and Sinopolese. Practical Applications: This study investigates with a holistic approach the development and maturation of drupes and the quality of oils obtained at two harvesting times. The strong correlation between olive ripening index and the other studied parameters prove that it is a valid index for olive growers to identify the optimal harvesting period for the three Calabrian olive cultivars. To obtain high mechanical harvest efficacy, this study suggests the use of trunk shakers to Grossa di Gerace olives and mechanical beaters to Ottobratica and Sinopolese.  相似文献   

5.
In this work we investigated the intact olive fruit quality prediction parameters measured directly by visible and near infrared spectroscopy (Vis/NIRS); the usefulness of a portable spectrometer is also assessed. The analysed parameters of the olive fruits were moisture, dry matter, oil content, oil free acidity and fruit maturity index. It was also studied whether NIR prediction of dry matter on olives may be more useful than NIR moisture measurement. Likewise, the results from the NIR prediction of olive oil contents related to dry matter as well as to fresh weight, were compared. Models for oil content were developed using Soxhlet extraction from dried olive paste as the reference analysis. Results indicate a good prediction potential of the models for the olive quality parameters analysed, with RPD ratios from 2.51 to 3.18. The successful NIR predictions of these quality parameters are reported for the first time. Practical applications: The technique presented here can expedite the milling procedure by allowing early detection of the olive quality and a quick calculation of the economic returns to the producers becomes possible. Furthermore, since oil quality depends largely on the optimal harvesting date when the olives should be taken to the mill, techniques that enable the monitoring of the oil content in olive fruit at different stages of maturity, even while still on the tree, become a useful and practical tool. This technique could allow monitoring the quality attributes of large amounts of the olive fruit entering the mill without the need of laboratory analysis that can only be conducted on a small number of olive fruit samples.  相似文献   

6.
Fruits from three Tunisian cultivars of Olea europea L. grown in the southeast of Tunisia were harvested at the maturity stage of ripeness and immediately processed with a laboratory mill. There are as yet no data on the chemical composition of virgin olive oils from the southeast of Tunisia, an area characterized by an arid condition of growth for olive trees. Our results showed significant differences in the analytical parameters examined for the three cultivars such as fatty acid composition, total phenols and o‐diphenols, and the content of chlorophylls and carotenoids, confirming the importance of genetic factors in the chemical characteristics of the oil. Headspace solid‐phase microextraction (HS‐SPME) was applied to the analysis of volatile compounds of virgin olive oils. Forty‐eight compounds were isolated and characterized by GC‐RI and GC‐MS, representing 94.1–98.1% of the total amount. (E)‐Hex‐2‐enal, the main compound extracted by SPME, characterized the olive oil headspace for all samples. So, it was clearly shown that there were qualitative and quantitative differences in the proportion of volatile constituents from oils of the various cultivars.  相似文献   

7.
The effects of the geographical region on the behavior of the Arbequina olive cultivar (cv) cultivated in the south of Tunisia (in the arid zone of Sfax) was compared to an autochthonous cultivar (Chemlali Sfax). Various olive parameters were analyzed, such as ripening index, pulp/stone ratio, oil contents, and sensory profiles. Most of the quality indices and fatty acid composition showed significant variations among olive cultivars. Arbequina cv is characterized by high oil yield with a less total phenols and pigments content than Chemlali Sfax cv. Cielab spectrophotometer coordinate L*, b*, and a* values show a great difference in olive oil colors. In spite of their low oleic acid contents, autochthonous cultivar presented a higher induction time (6.82 and 2.68 h for Chemlali and Arbequina, respectively) and high contents of phenolic compounds (158.28 and 110.27 mg/kg for Chemlali Sfax and Arbequina, respectively). The most important compounds identified were oleuropein aglycon (45.50 mg/kg), hydroxytyrosol (3.68 mg/kg), 1‐acetoxypinoresinol (6.23 mg/kg) in Chemlali Sfax oil and hydroxytyrosol glucoside (25.15 mg/kg), tyrosol (12.51 mg/kg), and oleuropein aglycon (30.60 mg/kg) in Arbequina oil. Chemlali Sfax also possessed a very bitter taste, whereas the Arbequina had a sweet taste amongst its attributes. The principal component analysis of the results indicated that the geographical region has significantly affected the olive oil quality.  相似文献   

8.
Work was carried out on the characterization of monovarietal virgin olive oils (VOO) from Tunisia and Sicily (Italy). The two main Tunisian VOO (cvv. Chétoui of the North and cv. Chemlali grown in the Center and some regions of the South) and three principal Sicilian VOO (cvv. Nocellara del Belice, Biancolilla and Cerasuola) were studied. Moreover, the Chétoui oils were tested in a rain‐fed control and an irrigation regime. All olive samples were picked at three different stages of ripeness. Analyses of major components (fatty acids and triacylglycerols) and minor ones (squalene, tocopherols and phenolic compounds) were carried out. Chétoui oils had a higher level of phenolic compounds followed by Chemlali. Generally, in the Sicilian oils these natural antioxidant contents were lower. These preliminary results indicate that it was possible to classify the Tunisian and Sicilian oils tested in their original growing area based on their chemical composition.  相似文献   

9.
Seventy‐four monovarietal olive oil samples belonging to the Koroneiki cultivar were collected from four selected olive oil‐producing regions of Greece (Messinia, Lakonia, Irakleio and Etoloakarnania), during two harvesting periods (2012/2013 and 2013/2014) at the stage of full maturation (maturation index 5–6). Determination of volatile compounds (VC), fatty acid (FA) composition, total phenolic content (TPC) and color parameters was carried out in an effort to classify Koroneiki olive oil samples according to geographical origin, while conventional quality parameters (CQP) were used to characterize the samples. The analytical data were then subjected to statistical analysis using multivariate analysis of variance (MANOVA) and linear discriminant analysis (LDA). The results showed a correct classification rate of 79.7% based on VC analysis, 81.1% based on the combination of VC analysis and FA composition, and 87.8% based on the combination of VC analysis and color parameters.  相似文献   

10.
The present study comprises the second part of an ongoing study focusing on olive oil from five less well‐known Greek cultivars for three of which there are no data available in the literature regarding their chemical composition. A total of 74 olive oil samples were collected during the harvesting periods 2012–2013 and 2013–2014. Headspace‐solid phase microextraction was applied to determine the olive oil volatile profile. Fifty‐six compounds were identified and semi‐quantified by CG–MS. Furthermore, fatty acid composition, conventional quality parameters and color parameters were determined in an effort to characterize and differentiate olive oils according to cultivar. All samples were characterized as extra virgin olive oils. Data obtained showed significant differences between the cultivars. Multi‐element analysis in combination with chemometrics resulted in a high classification rate of 86.5 % for the combination of volatiles plus color, 89.2 % for the combination of VC plus FA, and 91.9 % for the combination of FA composition plus color plus CQP.  相似文献   

11.
Despite the fact that Italy holds the most important olives heritage in the world, with about 800 cultivars, most of them are still underestimated, in particular those from Abruzzo, a region located in the center of the peninsula. The aim of this work is to study the changes in quality parameters of olive fruits and related oils of two autochthonous Abruzzo olive cultivars, Tortiglione and Dritta during ripening (from September to November 2017). Both cultivar and ripening time affect the chemical parameters of olive fruits. Results highlight an increasing trend of the oil content with final values, based on fresh matter, of 38.7 ± 0.3% and 38.1 ± 0.9% for Tortiglione and Dritta, respectively. Olive oils chemical composition is also affected by ripening time and cultivar, with Tortiglione oils resulting generally richer than Dritta oils; on the first sampling time (30th of October) values for total phenolic content, antioxidant activity, and chlorophylls are 803.8 ± 68.2 mg gallic acid equivalent kg−1, 2.7 ± 0.5 mmol trolox equivalent kg−1, and 30.8 ± 1.6 mg pheophytin a kg−1, respectively. Tocopherols seem to be more affected by ripening time than by cultivar, in particular for Dritta. Practical Application : The results on Abruzzo minor olive cultivars indicate that olive fruits and olive oil composition are strongly influenced by both cultivar and ripening time, giving rational indications about the optimal cultivar specific harvesting time and opening interesting opportunities for olive oil producers in a perspective of sustainable production to obtain high quality fruits and oils. The research provides detailed information about Tortiglione and Dritta olive cultivar, useful in the global context of revaluation of Italian minor olive varieties.  相似文献   

12.
The main objective of this work was to study the effects of foliar biofertilizers on individual volatile profiles and phenolic compounds of olive oil (Olea europaea L. cv. Chemlali). Three foliar biofertilizers were used in two successive application seasons: T1 (rich in nitrogen, phosphorus and potassium); T2 (rich in calcium); and T3 (application of both T1 and T2). Results showed that foliar fertilization with T2 increased the phenolic compound contents (e.g., oleuropein aglycone and decarboxymethyl ligstroside aglycone) of Chemlali olive oil. It also enhanced the levels of many volatile compounds responsible for the good flavor of olive oil such as hexanal. However, T1-tested fertilizer led to a significant decrease in the content of phenolic compounds, although they seemed to improve significantly the levels of the majority of volatile compounds, especially hexanal. Based on these results, a significant relationship between plant nutrition and quality of oil was observed. Our results demonstrated a potential positive influence on the concentration of sensory quality compounds under T2 (Ca2+-based fertilizer). This result should be considered in the design of foliar nutrient application management strategies for olive trees.  相似文献   

13.
The aim of the present work was to investigate the influence of fruit ripening on oil quality and volatile compounds in an attempt to establish an optimum harvesting time for Oueslati olives, the minor olive variety cultivated in Tunisia. Our results showed that many analytical parameters, i.e., peroxide value, UV absorbance at 232–270 nm, chlorophyll pigments, carotenoids and oleic acid contents decreased during ripening, whilst linolenic acid increased. Free acidity remained practically stable with a very slight rise at the highest maturity index. The volatile compounds emitted by the Oueslati olive oil were characterized and quantified by HS‐SPME‐GC‐EIMS. Twenty‐three volatile compounds were identified, mainly aldehydes, sesquiterpenes and esters. The results show variations in the volatile fractions and quality parameters of Oueslati extra virgin olive oil obtained at different olive‐ripening stages. Fifteen sesquiterpenes were identified for the first time in this cultivar, mainly hydrocarbon derivatives, but also oxygenated ones. On the basis of the quality parameters and volatile fractions studied, the best stage of Oueslati olive fruits for oil processing seems to be at ripeness index about 3.0. Indeed, these results suggested the possibility of using sesquiterpenes for olive authenticity and traceability and demonstrated that the volatile fractions can be used as indicators of the degree of ripening of the olives used to obtain the corresponding virgin olive oils.  相似文献   

14.
In recent years a growing demand for agricultural produce with an identifiable geographical origin has developed. The aim of this work was to study differences in quality and composition of virgin olive oils produced over four consecutive crop seasons in the region of the protected designation of origin “Les Garrigues” (Catalonia, Spain), taking the harvesting period and the climatic conditions of the year into consideration. The results obtained in this study indicate that virgin olive oil composition is greatly influenced by climatic conditions, mainly the cumulative rainfall in the case of FA composition and phenolic compounds, and the minimum temperatures during harvest period in the case of chlorophyll, carotenoid pigments, and α-tocopherol content. The harvest period influenced most of the parameters analyzed, apart from the PV and FFA content. Prediction models for carotenoid pigment content, oxidative stability, and bitter index were found.  相似文献   

15.
We performed a survey on the yield, quality, and chemical characteristics of virgin olive oils from two olive varieties in Croatian Istria: Frantoio and Ascolana tenera, on Cherry leafroll virus‐infected and virus‐noninfected trees and on two harvest dates. Free acidity, peroxide value, specific spectrophotometric absorptions at 232 and 270 nm, fatty acid composition, total phenols, o‐diphenols, oil color, and pigments were determined. Infected olives had lower oil yield and maturity index versus healthy ones. Oils from infected fruits had significant lower value of K232 and K270 and very elevated total phenols content compared to those obtained from healthy olives. Infected Frantoio gave a lower content of o‐diphenols than the healthy ones, which is in contrast to infected Ascolana that had higher values. The aim of this study is to determine the chemical changes in virgin olive oils from healthy and infected trees related to virus influence. According to our knowledge, this is the first survey on the possible influence of viruses on olive fruits, oil yield, and virgin olive oil quality. Practical applications : There are only few papers which analyze the influence of viruses on crops (especially influence on wine quality) and their effects on yield or other agronomic parameters. This work evaluates for the first time the impact of Cherry leafroll virus on the quality of virgin olive oil obtained from Frantoio and A. tenera varieties in terms of basic parameters related to the hydrolitic and oxidative status, content in antioxidant compounds, and in pigments as well as in fatty acid composition.  相似文献   

16.
Flavor components of olive oil—A review   总被引:2,自引:0,他引:2  
The unique and delicate flavor of olive oil is attributed to a number of volatile components. Aldehydes, alcohols, esters, hydrocarbons, ketones, furans, and other compounds have been quantitated and identified by gas chromatography-mass spectrometry in good-quality olive oil. The presence of flavor compounds in olive oil is closely related to its sensory quality. Hexanal, trans-2-hexenal, 1-hexanol, and 3-methylbutan-1-ol are the major volatile compounds of olive oil. Volatile flavor compounds are formed in the olive fruit through an enzymatic process. Olive cultivar, origin, maturity stage of fruit, storage conditions of fruit, and olive fruit processing influence the flavor components of olive oil and therefore its taste and aroma. The components octanal, nonala, and 2-hexenal, as well as the volatile alcohols propanol, amyl alcohols, 2-hexenol, 2-hexanol, and heptanol, characterize the olive cultivar. There are some slight changes in the flavor components in olive oil obtained from the same oil cultivar grown in different areas. The highest concentration of volatile components appears at the optimal maturity stage of fruit. During storage of olive fruit, volatile flavor components, such as aldehydes and esters, decrease. Phenolic compounds also have a significant effect on olive oil flavor. There is a good correlation between aroma and flavor of olive oil and its polyphenol content. Hydroxytyrosol, tyrosol, caffeic acid, coumaric acid, and p-hydroxybenzoic acid influence mostly the sensory characteristics of olive oil. Hydroxytyrosol is present in good-quality olive oil, while tyrosol and some phenolic acids are found in olive oil of poor quality. Various off-flavor compounds are formed by oxidation, which may be initiated in the olive fruit. Pentanal, hexanal, octanal, and nonanal are the major compounds formed in oxidized olive oil, but 2-pentenal and 2-heptenal are mainly responsible for the off-flavor.  相似文献   

17.
The effect of cultivar and ripeness stage on the potential nutritional value of monovarietal extra virgin olive oils (MEVOOs) obtained from Cordovil, Carrasquinha, Verdeal, and Negrinha do Freixo cultivars was investigated. MEVOOs produced were characterized by high oleic acid (72–83%), tocopherol (182–530 mg/kg), and phenolic compounds (326–1110 mg/kg) content and by a similar polyphenolic profile. 1‐Penten‐3‐one was found to be the compound with the highest contribution for the aroma of the four MEVOO, related to bitter, pungent, and leaf attributes. MEVOO from Verdeal cultivar showed the best performance in terms of the composition: the highest yield of oil, the highest content of oleic acid, high tocopherol, polyphenol and sterol content, and the lowest content of linoleic acid. These characteristics give to these MEVOO not only a great oxidative stability but also interesting properties from the health point of view. MEVOO obtained with fruits at the maturity index of around 4 were in general richer in beneficial minor compounds. MEVOO produced were discriminated by variety and ripeness stage, using a stepwise linear discriminant analysis. This discrimination will in the future enable the prevention of adulteration of these monovarietal olive oils with specific nutritional composition with other olive oils. Practical implications: High‐quality MEVOOs have recently been introduced in the market, which for growers is a practical way to differentiate and increase the commercial value of extra virgin olive oil. The quantification of major and minor olive oil compounds in monovarietal olive oils represents an objective way of predicting the sensory characteristics, stability, and potential health benefits of the oils, as well as preventing their adulteration with other olive oils. This study will help in the selection of olive varieties during the maintenance or development of new olive orchards and also to select optimum harvest period for these varieties, in order to obtain MEVOOs with the maximum quality and health benefits for consumers.  相似文献   

18.
In this study, the effects of filtration on quality parameters, chemical characteristics, antioxidant activity, and oxidative stability (OS) of Turkish olive oils during the storage period of 12 months were investigated. The olive oil free acidity (% oleic acid per 100 g of olive oil) (free fatty acidity, FFA), peroxide values (PV) (meq O2 kg−1 oil), and UV spectrophotometric indices (K232 and K270 measurements) were used for evaluating the quality parameters of olive oils. α-tocopherol analysis, total phenolic content (TPC), total chlorophyll and carotenoid analyses, and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical-scavenging activity (RSA) assays were carried out. Chromatographic methods were applied to determine the fatty-acid and triacylglycerol (TAG) composition, the content of methyl and ethyl esters (FAEE and FAME), and the content of fatty acids of olive oils. Univariate and multivariate statistical methods were performed to evaluate results. Univariate data analysis results showed that filtration of Ayvalık, Memecik, and Domat olive oils had no considerable influence on quality parameters, antioxidant compounds, FAEE and FAME, antioxidant activity, and OS, except TPC (P < 0.05). A significant difference between the samples was determined regarding storage times of the olive oils. Principal component analysis (PCA) analysis revealed that olive oils were grouped according to storage periods of the olive oils regarding fatty-acid and triacylglycerol (TAG) composition while there was no clear separation among the samples according to the filtration process. However, qualitative and quantitative changes took place on minor and major components of olive oils during the storage period.  相似文献   

19.
Changes in olive properties and oil quality, oxidative stability, phenolic and chemical composition of two common Turkish varieties (Memecik and Edremit) during maturation were investigated. Olive samples were collected in their own growing region for five different harvest dates and processed to oil with a laboratory scale mill. Metabolic behaviors of these two varieties along with the maturation were different in terms of some compositional parameters. Oleic acid, triolein, β-sitosterol, oleuropein, hydroxytyrosol, and tyrosol contents of olive or olive oils fluctuated with maturation. However, changes in average weight, flesh/pit ratio, water and oil contents of the olives were observed. Phenolics such as trans cinnamic acid contents of both olive fruits decreased whereas cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside anthocyanins increased. Free fatty acids of virgin olive oils were found independent of maturity although some slight changes were determined in peroxide value, dien and trien conjugations. Some compositional parameters such as pigment concentration, tocopherols, stearic acid, linolenic acid, palmitodiolein and monounsaturated/polyunsaturated fatty acid ratio decreased while linoleic acid, dioleolinolein, palmitooleolinolein and Δ-5-avenasterol percentages increased with the maturation. A clear discrimination was observed with principal component analysis. The data obtained can also be considered useful for providing information to determine the ideal maturity stage.  相似文献   

20.
This paper presents the first investigation on the effect of enrichment refined olive oil by chlorophyll pigment extracted from Chemlali olive leaves during storage (6 months). The changes that occurred in the quality indices, fatty acids, sterol, and phenolic content were investigated during the storage of refined olive oil under RT (20°C) and accelerated conditions (50°C) in the dark. Additionally, the pigments (chlorophyll and carotene) changes during 6 months of oil storage were evaluated. At the end of the storage, more than 90% of chlorophyll pigments decomposed in all samples, while, carotene pigment loss was lower showing up to 60 and 85% loss for oil stored at 20 and 50°C, respectively, at the end of storage. The reduction of total phenolic compounds exhibited similar degradation profiles, being reduced by 5% and up to 60% for the enriched refined olive oil stored at 20 and 50°C in 6 months, respectively. In the fatty acid composition, an increase in oleic acid and a decrease in linoleic and linolenic acids were less significant in enriched than non‐enriched refined olive oil. On the other hand, sterol composition was less affected by storage in enriched oil samples. However, the sterol concentration of the oil samples showed an increase in β‐sitosterol, 24‐methylene cholesterol, stigmasterol, and a decrease in cholesterol, Δ5, 24‐stigmastadienol percentage at the end of storage. Based on the Rancimat method, the oils with added leaf pigment extract had the lowest peroxide value and the highest stability. After 6 months of storage, the oxidative resistance of refined olive oil fell to 0.2 and to zero for enriched refined olive oil stored at 20 and 50°C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号