首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
反射裂缝是半刚性基层沥青路面和刚性基层沥青路面的主要病害之一,针对这一问题,提出了采用开级配大粒径沥青碎石混合料作为裂缝缓解层的方法,利用其大粒径矿料多、沥青含量少及空隙率大的结构特点消散及吸收裂缝处路面应力。以国内外OLSM参考级配为基础,结合试验段修筑情况,采用有限元方法,建立设置OLSM-25裂缝缓解层的沥青路面三维有限元模型,对设置不同类型裂缝缓解层、1~#-3~#级配OLSM-25裂缝缓解层的沥青路面结构进行热-荷载耦合应力对比分析,从宏观力学响应方面阐释了OLSM-25裂缝缓解层的抗裂机理。结果表明:与相同厚度的普通AC-25裂缝缓解层相比,OLSM-25裂缝缓解层的温度敏感性相对较小,具有较高的承载能力和良好的应力消减及缓解性能;在相同的外部荷载作用下,随着1~#-3~#级配OLSM-25空隙率的增大,以及抗压回弹模量和线膨胀系数的降低,其自身的车辆荷载应力、温度应力、耦舍应力呈总体降低趋势。在实际工程应用中,仅从缓解应力效果及抗裂性能方面考虑,选择级配偏粗、空隙率较大的3~#级配OLSM-25作为裂缝缓解层效果较好,但应严格控制施工中的离析问题。  相似文献   

2.
为了解决刚性基层沥青路面存在的沥青面层反射裂缝问题,提出了采用开级配大粒径沥青碎石混合料(OLSM)作为裂缝缓解层的方法,以国内外OLSM参考级配为基础,结合试验段修筑情况,采用离散元方法,运用二维颗粒流程序,建立设置OLSM-25裂缝缓解层的沥青路面离散元模型,对其细观结构与抗裂性能进行离散元数值分析,从细观角度阐释了OLSM-25裂缝缓解层的抗裂机理。研究结果表明:在车辆荷载偏载作用下,当裂缝缓解层厚度相同时,OLSM-25裂缝缓解层底部A点颗粒的竖向接触力、竖向运动速度及竖向位移量均小于普通AC-25裂缝缓解层的对应值,OLSM-25裂缝缓解层的抗裂效果优于普通AC-25裂缝缓解层;在实际工程应用中,综合考虑应力缓解效果及变形能力两大因素,选择材料组成相对偏粗、空隙率适中的2#级配OLSM-25作为裂缝缓解层较为合适。  相似文献   

3.
针对开级配大粒径沥青碎石(OLSM)优良的抗变形能力,采用有限元法对基于OLSM的旧水泥混凝土路面加铺结构进行应力分析。结果表明:设置OLSM抗裂层后,在车辆作用,温度应力以及二者的耦合作用下,接缝处的最大主应力、等效应力和最大剪应力都有较大程度的减小。  相似文献   

4.
级配碎石夹层路面结构的断裂力学分析   总被引:2,自引:1,他引:1  
半刚性基层沥青路面容易产生反射裂缝,实践证明在沥青路面中设置级配碎石夹层可以有效地减少反射裂缝的产生.文章基于ABAQUS有限元计算方法,通过断裂力学分析得出在沥青面层结构下设置级配碎石夹层结构,可以大大减小底基层的反射裂缝应力强度因子,防止反射裂缝的发生;同时适当增加下基层模量可以减缓基层反射裂缝的扩展,从而为沥青路面结构合理设置级配碎石夹层提供理论依据.  相似文献   

5.
贫混凝土基层沥青路面荷载应力有限元分析   总被引:5,自引:0,他引:5  
为了研究贫混凝土沥青路面受力在不同路面结构和材料参数下的状况,通过三维有限元数值分析方法,分析了面层厚度、面层模量、应力吸收层厚度、应力吸收层模量和裂缝宽度对贫混凝土基层沥青面层层底应力的影响.路面结构计算与分析表明在贫混凝土基层-沥青面层复合式路面结构中,适当增加沥青面层厚度对防治反射裂缝十分有效,而通过提高沥青面层强度的方法来减少反射裂缝效果不明显;一定厚度和模量的应力吸收层能有效降低沥青面层底面应力水平;贫混凝土基层裂缝宽度对沥青面层底面受力具有较大的影响.  相似文献   

6.
目的找寻适应不同交通等级的合理的低水泥剂量基层沥青路面结构.方法拟定低水泥剂量级配碎石基层沥青路面结构,利用有限元软件计算以低水泥剂量稳定级配碎石取代半刚性基层后对弯沉、沥青层底拉应力等设计指标的影响,并结合交通荷载分析各结构层厚度组合合理性.结果轻交通等级下,推荐使用5 cm普通沥青混凝土面层+22 cm水泥质量分数为3%的低水泥剂量稳定级配碎石单基层;中交通等级下,推荐采用上基层厚度大于15 cm的水泥质量分数为2.5%的低水泥剂量稳定级配碎石,半刚性下基层厚度至少为20 cm结构组合形式;重交通等级下,推荐采用15 cm水泥质量分数为2.5%的低水泥剂量稳定级配碎石上基层和15 cm+20 cm半刚性双基层结构组合.结论在重、中交通荷载作用下,合理的低水泥剂量级配碎石基层能够在防治反射裂缝同时,较好地满足交通荷载需求.  相似文献   

7.
刘尧波 《科技信息》2009,(6):254-255
将空隙率较高的最大粒径公称为26.5mm的大粒径沥青碎石混合料铺筑代替半刚性基层,解决半刚性基层补强中反射裂缝及排水问题。采用集料嵌挤方法进行级配设计,使用高粘度沥青增加沥青膜厚度,以析漏指标确定沥青用量。通过试验路提出大碎石沥青混合料柔性基层的施工工艺。试验路观测表明:大碎石沥青混合料柔性塞层用于旧路改造,能够满足道路结构强度及高温稳定性要求,起到路面结构排水的作用,有效地防止了反射裂缝的产生。  相似文献   

8.
针对半刚性基层在沥青路面使用过程引起的裂缝破坏,使其在高等级公路中的适用性受到质疑的问题,通过设置级配碎石和沥青碎石过渡层使半刚性基层的层位实现向下放置,实现了改善半刚性基层受力和减少裂缝的目的。采用ANSYS计算设置不同厚度的级配碎石和沥青碎石过渡层,分析路面结构在荷载作用下基层厚度变化时轮隙中心的受力情况,以考察适宜的半刚性基层层位和厚度。力学分析结果表明:采用厚度为12~15cm的级配碎石层和厚度为25~35cm的半刚性基层、或设置厚度为10~15cm的沥青碎石层和厚度为20~30cm的半刚性基层这两种结构,完全可以满足控制路面结构开裂的指标要求;能减少路面结构出现裂缝,延长沥青路面的结构寿命。  相似文献   

9.
为了深入研究贫沥青碎石这种新型材料作为中间层结构时,其材料组成对缓解半刚性基层反射裂缝的效果,运用多级嵌挤理论,采用逐级填充设计方法,对贫沥青碎石粗、细集料进行设计.研究7种矿料级配组成及其各自最佳沥青用量,通过对贫沥青碎石的强度、CBR(加州承载比)、高温性、水稳性等性能进行研究比选,给出了推荐的级配范围;在选定的级配范围和最佳沥青用量内进行贫沥青碎石粉胶比设计,并铺筑试验路进行路用性能验证.研究结果表明,当粗、细集料比例在3∶1~17∶3,最佳沥青用量为2.52%~2.75%,粉胶比为0.78~1.22时,该新型材料具有很好的延缓路面反射裂缝的功能,其组成配比及设计方法对防治半刚性基层反射裂缝具有重要意义.  相似文献   

10.
李龙 《甘肃科技纵横》2013,42(7):102-104
橡胶沥青碎石封层是指在半刚性基层与沥青路面面层之间加铺一层橡胶沥青,然后撒布一定规格的单粒级碎石,形成一个稳定的界面功能层,能够吸收裂缝部位的集中应力,有效延缓沥青路面反射裂缝的发生,起到应力吸收层的作用;有效阻止水分渗入基层,避免出现水损害,有效的解决和防水和黏结的要求。  相似文献   

11.
为解决乌鲁木齐市城市道路半刚性基层沥青路面横、纵向裂缝和车辙病害严重的问题,选取乌鲁木齐市城市道路典型的半刚性基层沥青路面结构,对面层厚度、基层模量以及基层厚度进行规律性的变化,研究沥青路面结构在不同行车荷载作用下的力学分布及变化规律.利用ANSYS有限元软件对不同行车荷载作用下的半刚性基层沥青路面结构进行仿真计算,并对提取的数据进行分析.结果表明:随着沥青路面厚度的增加,沥青层拉应力和剪应力均逐渐减小,但减小幅度却各有不同;随着半刚性基层厚度的增加,沥青层拉应力和剪应力均逐渐减小,且减小幅度均较小;随着半刚性基层模量的增加,竖向位移和沥青层剪应力均逐渐减小.因此,建议沥青面层在18~20 cm取值,半刚性基层厚度在35~40 cm取值,半刚性基层模量在1500~1600 MPa取值.  相似文献   

12.
岳建光 《河南科学》2012,30(8):1110-1113
防治反射裂缝,使现有道路能够继续承担未来的交通荷载是旧混凝土路面加铺沥青混凝土需要解决的主要问题.橡胶沥青应力吸收层具有吸收应力、减少反射裂缝、防水、粘接力强等优点.通过工程实例,对沥青加铺层反射裂缝产生机理、加铺层设计方法以及基于应力吸收层的沥青加铺层结构及材料等作一些探讨;重点论述橡胶沥青应力吸收层的作用机理和相关的施工工艺.  相似文献   

13.
综述了沥青路面温度应力影响因素的发展现状,总结了环境、路面结构以及材料因素对路面温度应力的影响规律,并对其敏感性进行定性分析总结.研究表明:与温度应力变化趋势正相关的因素有初始温度、降温速率、温差、路面宽度、面层模量、基层模量、面层&基层模量比值、基层&地基模量比值以及裂缝深度;与温度应力变化趋势负相关的因素有日平均温度、面层厚度、基层厚度与面层比热容;泊松比对温度应力的影响较小,可忽略不计.数种影响因素中,沥青路面温度应力对温差、降温速率、面层导热系数及路面开裂情况的敏感性较高.在此基础上,提出后续研究应对沥青路面温度应力进行多因素耦合分析,相关影响因素敏感性全面定性定量分析,考虑不同路面结构的区域特性,基于全寿命沥青路面概念进行全时程时效分析等,以更加准确地把握路面结构内部的应力状况,为路面设计及后续研究提供一定的参考价值.  相似文献   

14.
为了研究多孔混凝土基层沥青路面的结构设计方法,通过三维有限元数值分析方法,建立多孔混凝土基层缩缝处沥青路面的三维有限元模型,分析多孔混凝土基层缩缝处沥青面层的荷载应力、温度应力、荷载与温度耦合作用下的耦合应力。结果表明:基层缩缝处沥青面层底面荷载主应力多为压应力值,但其剪应力在接缝处出现峰值;在温度作用下,沥青面层应力峰值点的位置在基层缩缝中点处沥青面层的底面及表面;荷载和温度耦合作用下基层缩缝中点处沥青面层底面的第一主应力介于荷载应力和温度应力之间。  相似文献   

15.
应用权函数理论,推导出了层间完全连续路面裂缝的权函数和应力强度因子计算方法,并通过所编制的程序分析了层间连续沥青路面应力强度因子与基层参数的关系,分析表明:增加基层模量可以降低沥青层应力强度因子,但会增加基层应力强度因子;增加基层厚度可以降低沥青层和基层应力强度因子,但基层厚度大时对沥青层应力强度因子的影响较小,裂缝长度对应力强度因子影响较明显,增加胎压也会显著增加应力强度因子。  相似文献   

16.
旧水泥混凝土路面黑色罩面反射裂缝的防治   总被引:12,自引:3,他引:12  
通过对旧水泥混凝土路面黑色罩面反射裂缝形成机理和层间应力分析,研究了层问剪应力分布的一般规律,发现沥青混凝土黑色罩面层厚对层间剪应力的影响很大,而水泥混凝土层厚度对层间剪应力的影响很微弱。工程实践表明,单纯依靠增加铺层厚度而减小层间剪应力的方法可能会大幅度增加路面造价,并带来车辙等其他病害;而在旧水泥混凝土层与沥青加铺层间设置应力吸收层,则可以起到应力过渡作用和裂缝缓冲作用,从而减少黑色面层反射裂缝的出现。  相似文献   

17.
为了合理评价温度对沥青路面结构的影响,考虑沥青路面温度沿深度方向的非均匀性分布和温度对沥青混凝土模量的影响,利用有限元法计算分析了不同面层初始裂缝深度和不同气温下的路面结构温度应力与应力强度因子变化情况。结果表明:面层表面开裂后,裂缝处的温度应力显著减小,面层底面的温度应力有所增大;裂缝初始深度越大,日平均温度越低,温差越大,面层底面的温度应力越大,裂缝处的应力强度因子也越大。在青藏公路沿线平均气温低、日温差大的条件下,一旦面层表面开裂,沥青路面结构将产生较大温度应力,导致裂缝快速向下扩展。  相似文献   

18.
在道路工程中基层与面层之间设置聚酯玻纤布夹层,可以有效的延缓反射裂缝病害的发生,而夹层的黏附性影响着防治反射裂缝效果;采用斜剪试验法对聚酯玻纤布夹层的黏结力进行对比试验,分析乳化沥青、改性沥青、基质沥青等不同黏结剂与垂直、水平剪应力的相互关系,得到基层与面层最佳黏结剂的种类;通过分析不同用量的沥青黏结剂与垂直、水平剪应力的关系,构建了黏结剂滑移模型,并确定了最佳黏结剂用量,为沥青路面病害的预防提出了一种新的研究思路。  相似文献   

19.
为研究不同胶粉掺量下橡胶沥青混合料的路用性能,本文通过在70#A级基质沥青中掺加不同质量胶粉,利用沥青激光回弹试验、沥青接触角试验分析了沥青PG等级以及沥青胶结料与集料之间的粘附特征,确定了橡胶沥青路面结构上、中、下面层的最佳胶粉掺量(即上面层SMA-13添加30%,中面层AC-20添加40%,下面层AC-25添加50%);通过对不同胶粉掺量橡胶沥青混合料的汉堡车辙试验、低温弯曲抗裂试验及直接剪切试验等力学性能研究得到了:胶粉的掺入可增强沥青胶结料与集料间的内聚力,使沥青混合料的塑性变形能力变强,有效改善了橡胶沥青混合料不同结构层的水稳定性和高温抗车辙能力,提高了橡胶沥青混合料的抗裂性能和抗疲劳性能。结合工程实例,借用三维雷达检测系统,评价了现场橡胶混合料沥青路面结构层摊铺的整体性和材料厚的均匀性等道路内部状况;通过现场路面取芯后CT扫描,获取了现场路面结构的集料-空隙三维空间分布情况,得到了胶粉的加入能促进沥青胶结料与集料间的分子运动,有效改善沥青混合料的孔隙分布情况,使路面内部材料更加均匀分布,充分发挥橡胶沥青路面优良的路用性能。  相似文献   

20.
【目的】研究沥青路面表面裂缝在动荷载作用下的扩展行为,分析完整沥青路面结构和含表面裂缝结构的负荷响应,探讨应力强度因子K2随着荷载变化的规律,以及表面裂缝在扩展过程中K2的敏感性,为公路工程中路面结构抗裂设计提供一定理论依据。【方法】应用有限元软件ABAQUS建立沥青路面表面裂缝结构模型,基于动力学理论对交通荷载作用下沥青路面结构进行数值计算。【结果】动荷载作用下,完整沥青路面的表面弯沉较静态荷载有所减小,随着裂缝扩展深度的增大,弯沉值会逐渐增大; 动应力强度因子K2的变化曲线较荷载变化曲线具有一定的滞后性,且最大值大于静态荷载下K2的值; 表面裂缝向下扩展过程中,K2在扩展前期增长速率较快,扩展至面板厚度一半后,K2的增长速率逐渐放缓; 减小面层模量、增大基层模量和厚度,能够较好地抑制表面裂缝的扩展,其余参数则影响较小; K2随着行车荷载的增大呈线性增长趋势,裂缝扩展越深K2增加越显著。【结论】延长含表面裂缝的沥青路面结构的使用寿命,较好的方法是减小面层动态模量,适当增大基层的动态模量以及增大基层的厚度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号