首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heller RC  Kang S  Lam WM  Chen S  Chan CS  Bell SP 《Cell》2011,146(1):80-91
Proper eukaryotic DNA replication requires temporal separation of helicase loading from helicase activation and replisome assembly. Using an in?vitro assay for eukaryotic origin-dependent replication initiation, we investigated the control of these events. After helicase loading, we found that the Dbf4-dependent Cdc7 kinase (DDK) but not S phase cyclin-dependent kinase (S-CDK) is required for the initial origin recruitment of Sld3 and the Cdc45 helicase-activating protein. Likewise, in?vivo, DDK drives early-firing-origin recruitment of Cdc45 before activation of S-CDK. After S-CDK activation, a second helicase-activating protein (GINS) and the remainder of the replisome are recruited to the origin. Finally, recruitment of lagging but not leading strand DNA polymerases depends on Mcm10 and DNA unwinding. Our studies identify distinct roles for DDK and S-CDK during helicase activation and support a model in which the leading strand DNA polymerase is recruited prior to origin DNA unwinding and RNA primer synthesis.  相似文献   

2.
Initiation of chromosome DNA replication in eukaryotes is tightly regulated through assembly of replication factors at replication origins. Here, we investigated dependence of the assembly of the initiation complex on particular factors using temperature-sensitive fission yeast mutants. The psf3-1 mutant, a GINS component mutant, arrested with unreplicated DNA at the restrictive temperature and the DNA content gradually increased, suggesting a defect in DNA replication. The mutation impaired GINS complex formation, as shown by pull-down experiments. Chromatin immunoprecipitation assays indicated that GINS integrity was required for origin loading of Psf2, Cut5 and Cdc45, but not Sld3. In contrast, loading of Psf2 onto origins depended on Sld3 and Cut5 but not on Cdc45. These results suggest that Sld3 functions furthest upstream in initiation complex assembly, followed by GINS and Cut5, then Cdc45. Consistent with this conclusion, Cdc7-Dbf4 kinase (DDK) but not cyclin-dependent kinase (CDK) was required for Sld3 loading, whereas recruitment of the other factors depended on both kinases. These results suggest that DDK and CDK regulate distinct steps in activation of replication origins in fission yeast.  相似文献   

3.
In budding yeast, Dbf4p and Cdc7p control initiation of DNA synthesis. They form a protein kinase - Cdc7p being the catalytic subunit and Dbf4p a cyclin-like molecule that activates the kinase in late G1 phase. Dbf4p also targets Cdc7p to origins of replication, where probable substrates include certain Mcm proteins. Recent studies have identified Dbf4p- and Cdc7p-related proteins in fission yeast and metazoans. These homologues also phosphorylate Mcm proteins and could have a similar function to that of Dbf4p-Cdc7p in budding yeast. Thus, it seems likely that, like the cyclin-dependent kinases (CDKs), the Dbf4p-Cdc7p activity is conserved in all eukaryotes.  相似文献   

4.
DNA replication initiation in eukaryotes is tightly regulated through two cell-cycle specific processes, replication licensing to install inactive minichromosome maintenance (MCM) double-hexamers (DH) on origins in early G1 phase and origin firing to assemble and activate Cdc45-Mcm2-7-GINS (CMG) helicases upon S phase entry. Two kinases, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), are responsible for driving the association of replication factors with the MCM-DH to form CMG helicases for origin melting and DNA unwinding and eventually replisomes for bi-directional DNA synthesis. In recent years, cryo-electron microscopy studies have generated a collection of structural snapshots for the stepwise assembly and remodeling of the replication initiation machineries, creating a framework for understanding the regulation of this fundamental process at a molecular level. Very recent progress is the structural characterization of the elusive MCM-DH-DDK complex, which provides insights into mechanisms of kinase activation, substrate recognition and selection, as well as molecular role of DDK-mediated MCM-DH phosphorylation in helicase activation.  相似文献   

5.
Dbf4/Cdc7 (Dbf4-dependent kinase (DDK)) is activated at the onset of S-phase, and its kinase activity is required for DNA replication initiation from each origin. We showed that DDK is an important target for the S-phase checkpoint in mammalian cells to suppress replication initiation and to protect replication forks. We demonstrated that ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) proteins directly phosphorylate Dbf4 in response to ionizing radiation and replication stress. We identified novel ATM/ATR phosphorylation sites on Dbf4 and showed that ATM/ATR-mediated phosphorylation of Dbf4 is critical for the intra-S-phase checkpoint to inhibit DNA replication. The kinase activity of DDK, which is not suppressed upon DNA damage, is required for fork protection under replication stress. We further demonstrated that ATM/ATR-mediated phosphorylation of Dbf4 is important for preventing DNA rereplication upon loss of replication licensing through the activation of the S-phase checkpoint. These studies indicate that DDK is a direct substrate of ATM and ATR to mediate the intra-S-phase checkpoint in mammalian cells.  相似文献   

6.
The initiation of eukaryotic DNA replication requires the assembly of active CMG (Cdc45‐MCM‐GINS) helicases at replication origins by a set of conserved and essential firing factors. This process is controlled during the cell cycle by cyclin‐dependent kinase (CDK) and Dbf4‐dependent kinase (DDK), and in response to DNA damage by the checkpoint kinase Rad53/Chk1. Here we show that Sld3, previously shown to be an essential CDK and Rad53 substrate, is recruited to the inactive MCM double hexamer in a DDK‐dependent manner. Sld3 binds specifically to DDK‐phosphorylated peptides from two MCM subunits (Mcm4, 6) and then recruits Cdc45. MCM mutants that cannot bind Sld3 or Sld3 mutants that cannot bind phospho‐MCM or Cdc45 do not support replication. Moreover, phosphomimicking mutants in Mcm4 and Mcm6 bind Sld3 without DDK and facilitate DDK‐independent replication. Thus, Sld3 is an essential “reader” of DDK phosphorylation, integrating signals from three distinct protein kinase pathways to coordinate DNA replication during S phase.  相似文献   

7.
DNA repair by homologous recombination is under stringent cell cycle control. This includes the last step of the reaction, disentanglement of DNA joint molecules (JMs). Previous work has established that JM resolving nucleases are activated specifically at the onset of mitosis. In case of budding yeast Mus81‐Mms4, this cell cycle stage‐specific activation is known to depend on phosphorylation by CDK and Cdc5 kinases. Here, we show that a third cell cycle kinase, Cdc7‐Dbf4 (DDK), targets Mus81‐Mms4 in conjunction with Cdc5—both kinases bind to as well as phosphorylate Mus81‐Mms4 in an interdependent manner. Moreover, DDK‐mediated phosphorylation of Mms4 is strictly required for Mus81 activation in mitosis, establishing DDK as a novel regulator of homologous recombination. The scaffold protein Rtt107, which binds the Mus81‐Mms4 complex, interacts with Cdc7 and thereby targets DDK and Cdc5 to the complex enabling full Mus81 activation. Therefore, Mus81 activation in mitosis involves at least three cell cycle kinases, CDK, Cdc5 and DDK. Furthermore, tethering of the kinases in a stable complex with Mus81 is critical for efficient JM resolution.  相似文献   

8.
9.
Eukaryotic cells coordinate chromosome duplication by assembly of protein complexes at origins of DNA replication and by activation of cyclin-dependent kinase and Cdc7p-Dbf4p kinase. We show in Saccharomyces cerevisiae that although Cdc7p levels are constant during the cell division cycle, Dbf4p and Cdc7p-Dbf4p kinase activity fluctuate. Dbf4p binds to chromatin near the G(1)/S-phase boundary well after binding of the minichromosome maintenance (Mcm) proteins, and it is stabilized at the non-permissive temperature in mutants of the anaphase-promoting complex, suggesting that Dbf4p is targeted for destruction by ubiquitin-mediated proteolysis. Arresting cells with hydroxyurea (HU) or with mutations in genes encoding DNA replication proteins results in a more stable, hyper-phosphorylated form of Dbf4p and an attenuated kinase activity. The Dbf4p phosphorylation in response to HU is RAD53 dependent. This suggests that an S-phase checkpoint function regulates Cdc7p-Dbf4p kinase activity. Cdc7p may also play a role in adapting from the checkpoint response since deletion of CDC7 results in HU hypersensitivity. Recombinant Cdc7p-Dbf4p kinase was purified and both subunits were autophosphorylated. Cdc7p-Dbf4p efficiently phosphorylates several proteins that are required for the initiation of DNA replication, including five of the six Mcm proteins and the p180 subunit of DNA polymerase alpha-primase.  相似文献   

10.
A novel role for Cdc5p in DNA replication.   总被引:16,自引:5,他引:11       下载免费PDF全文
DNA replication initiates from specific chromosomal sites called origins, and in the budding yeast Saccharomyces cerevisiae these sites are occupied by the origin recognition complex (ORC). Dbf4p is proposed to play a role in targeting the G1/S kinase Cdc7p to initiation complexes late in G1. We report that Dbf4p may also recruit Cdc5p to origin complexes. Cdc5p is a member of the Polo family of kinases that is required for the completion of mitosis. Cdc5p and Cdc7p each interact with a distinct domain of Dbf4p. cdc5-1 mutants have a plasmid maintenance defect that can be suppressed by the addition of multiple origins. cdc5-1 orc2-1 double mutants are synthetically lethal. Levels of Cdc5p were found to be cell cycle regulated and peaked in G2/M. These results suggest a role for Cdc5p and possibly Polo-like kinases at origin complexes.  相似文献   

11.
Initiation of DNA replication in eukaryotic cells is regulated through the ordered assembly of replication complexes at origins of replication. Association of Cdc45 with the origins is a crucial step in assembly of the replication machinery, hence can be considered a target for the regulation of origin activation. To examine the process required for SpCdc45 loading, we isolated fission yeast SpSld3, a counterpart of budding yeast Sld3 that interacts with Cdc45. SpSld3 associates with the replication origin during G1-S phases and this association depends on Dbf4-dependent (DDK) kinase activity. In the corresponding period, SpSld3 interacts with minichromosome maintenance (MCM) proteins and then with SpCdc45. A temperature-sensitive sld3-10 mutation suppressed by the multicopy of the sna41+ encoding SpCdc45 impairs loading of SpCdc45 onto chromatin. In addition, this mutation leads to dissociation of preloaded Cdc45 from chromatin in the hydroxyurea-arrested S phase, and DNA replication upon removal of hydroxyurea is retarded. Thus, we conclude that SpSld3 is required for stable association of Cdc45 with chromatin both in initiation and elongation of DNA replication. The DDK-dependent origin association suggests that SpSld3 is involved in temporal regulation of origin firing.  相似文献   

12.
Studies in model organisms have contributed to elucidate multiple levels at which regulation of eukaryotic DNA replication occurs. Cdc7, an evolutionarily conserved serine-threonine kinase, plays a pivotal role in linking cell cycle regulation to genome duplication, being essential for the firing of DNA replication origins. Binding of the cell cycle-regulated subunit Dbf4 to Cdc7 is necessary for in vitro kinase activity. This binding is also thought to be the key regulatory event that controls Cdc7 activity in cells. Here, we describe a novel human protein, Drf1, related to both human and yeast Dbf4. Drf1 is a nuclear cell cycle-regulated protein, it binds to Cdc7 and activates the kinase. Therefore, human Cdc7, like cyclin-dependent kinases, can be activated by alternative regulatory subunits. Since the Drf1 gene is either absent or not yet identified in the genome of model organisms such as yeast and Drosophila, these findings introduce a new level of complexity in the regulation of DNA replication of the human genome.  相似文献   

13.
T Tanaka  K Nasmyth 《The EMBO journal》1998,17(17):5182-5191
Eukaryotic cells use multiple replication origins to replicate their large genomes. Some origins fire early during S phase whereas others fire late. In Saccharomyces cerevisiae, initiator sequences (ARSs) are bound by the origin recognition complex (ORC). Cdc6p synthesized at the end of mitosis joins ORC and facilitates recruitment of Mcm proteins, which renders origins competent to fire. However, origins fire only upon the subsequent activation of S phase cyclin-dependent kinases (S-CDKs) and Dbf4/Cdc7 at the G1/S boundary. We have used a chromatin immunoprecipitation assay to measure the association with ARS sequences of DNA primase and the single-stranded DNA binding replication protein A (RPA) when fork movement is inhibited by hydroxyurea (HU). RPA's association with origins requires S-CDKs, Dbf4/Cdc7 kinase and an Mcm protein. The recruitment of DNA primase depends on RPA. Furthermore, early- and late-firing origins differ not in the timing of their recruitment of an Mcm protein, but in the timing of RPA's recruitment. RPA is recruited to early but not to late origins in HU. We also show that Rad53 kinase is required to prevent RPA association with a late origin in HU. Our data suggest that the origin unwinding accompanied by RPA association is a key step, regulated by S-CDKs, Dbf4/Cdc7 and Rad53p. Thus, in the presence of active S-CDKs and Dbf4/Cdc7, Mcms may open origins and thereby facilitate the loading of RPA.  相似文献   

14.

Background

Chromosomal DNA replication in eukaryotes initiates from multiple origins of replication, and because of this multiplicity, activation of replication origins is likely to be highly coordinated; origins fire at characteristic times, with some origins firing on average earlier (early-firing origins) and others later (late-firing origins) in the S phase of the budding yeast cell cycle. However, the molecular basis for such temporal regulation is poorly understood.

Results

We show that origin association of the low-abundance replication proteins Sld3, Sld7, and Cdc45 is the key to determining the temporal order of origin firing. These proteins form a complex and associate with the early-firing origins in G1 phase in a manner that depends on Dbf4-dependent kinase (DDK), which is essential for the initiation of DNA replication. An increased dosage of Sld3, Sld7, and Cdc45 allows the late-firing origins to fire earlier in S phase. Additionally, an increased dosage of DDK also allows the late-firing origins to fire earlier.

Conclusions

The DDK-dependent limited association between origins and Sld3-Sld7-Cdc45 is a key step for determining the timing of origin firing.  相似文献   

15.
The yeast Saccharomyces cerevisiae Cdc7p/Dbf4p protein kinase complex was purified to near homogeneity from insect cells. The complex efficiently phosphorylated yeast Mcm2p and less efficiently the remaining Mcm proteins or other replication proteins. Significantly, when pretreated with alkaline phosphatase, Mcm2p became completely inactive as a substrate, suggesting that it must be phosphorylated by other protein kinase(s) to be a substrate for the Cdc7p/Dbf4p complex. Mutant Cdc7p/Dbf4p complexes containing either Cdc7-1p or Dbf4-1 approximately 5p were also partially purified from insect cells and characterized in vitro. Furthermore, the autonomously replicating sequence binding activity of various dbf4 mutants was also analyzed. These studies suggest that the autonomously replicating sequence-binding and Cdc7p protein kinase activation domains of Dbf4p collaborate to form an active Cdc7p/Dbf4p complex and function during S phase in S. cerevisiae. It is shown that Rad53p phosphorylates the Cdc7p/Dbf4p complex in vitro and that this phosphorylation greatly inhibits the kinase activity of Cdc7p/Dbf4p. This result suggests that Rad53p controls the initiation of chromosomal DNA replication by regulating the protein kinase activity associated with the Cdc7p/Dbf4p complex.  相似文献   

16.
Eukaryotic chromosomes are replicated from multiple origins that initiate throughout the S-phase of the cell cycle. Why all origins do not fire simultaneously at the beginning of S-phase is not known, but two kinase activities, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), are continually required throughout the S-phase for all replication initiation events. Here, we show that the two CDK substrates Sld3 and Sld2 and their binding partner Dpb11, together with the DDK subunit Dbf4 are in low abundance in the budding yeast, Saccharomyces cerevisiae. Over-expression of these factors is sufficient to allow late firing origins of replication to initiate early and together with deletion of the histone deacetylase RPD3, promotes the firing of heterochromatic, dormant origins. We demonstrate that the normal programme of origin firing prevents inappropriate checkpoint activation and controls S-phase length in budding yeast. These results explain how the competition for limiting DDK kinase and CDK targets at origins regulates replication initiation kinetics during S-phase and establishes a unique system with which to investigate the biological roles of the temporal programme of origin firing.  相似文献   

17.
The Dbf4/Cdc7 kinase (DDK) plays an essential role in stimulating DNA replication by phosphorylating subunits of the Mcm2-7 helicase complex at origins. This kinase complex is itself phosphorylated and removed from chromatin in a Rad53-dependent manner when an S phase checkpoint is triggered. Comparison of Dbf4 sequence across a variety of eukaryotic species has revealed three conserved regions that have been termed motifs N, M and C. The most highly conserved of the three, motif C, encodes a zinc finger, which are known to mediate protein-protein and protein-DNA interactions. Mutation of conserved motif C cysteines and histidines disrupted the association of Dbf4 with ARS1 origin DNA and Mcm2, but not other known ligands including Cdc7, Rad53 or the origin recognition complex subunit Orc2. Furthermore, these mutations impaired the ability of Dbf4 to phosphorylate Mcm2. Budding yeast strains for which the single genomic DBF4 copy was replaced with these motif C mutant alleles were compromised for entry into and progression through S phase, indicating that the observed weakening of the Mcm2 interaction prevents DDK from efficiently stimulating the initiation of DNA replication. Following initiation, Mcm2-7 migrates with the replication fork. Interestingly, the motif C mutants were sensitive to long-term, but not short-term exposure to the genotoxic agents hydroxyurea and methyl methanesulfonate. These results support a model whereby DDK interaction with Mcm2 is important to stabilize and/or restart replication forks during conditions where a prolonged S-phase checkpoint is triggered.  相似文献   

18.
The Dbf4-dependent Cdc7 kinase (DDK) is essential for chromosome duplication in all eukaryotes, but was proposed to be dispensable for yeast pre-meiotic DNA replication. This discrepancy led us to investigate the role of the unstable Cdc7-regulatory protein Dbf4 in meiosis. We show that, when Dbf4 is depleted at the time of meiotic induction, cells enter the meiotic program but do not replicate their chromosomes. Surprisingly when Dbf4 is depleted after the initiation of DNA synthesis, S phase goes to completion, but most cells arrest before anaphase I. Deletion of the cohesin Rec8 suppresses this phenotype, suggesting a distinct role of DDK for meiotic chromosome segregation. As after Cdc5 depletion, a fraction of cells undergo a single equational division suggesting a failure to mono-orient sister kinetochores. Our results demonstrate that Dbf4 is essential for DNA replication during meiosis like in vegetative cells and provide evidence for an additional role in setting up the reductional division of meiosis I.  相似文献   

19.
Eukaryotic DNA replication initiates from multiple replication origins. To ensure each origin fires just once per cell cycle, initiation is divided into two biochemically discrete steps: the Mcm2‐7 helicase is first loaded into prereplicative complexes (pre‐RCs) as an inactive double hexamer by the origin recognition complex (ORC), Cdt1 and Cdc6; the helicase is then activated by a set of “firing factors.” Here, we show that plasmids containing pre‐RCs assembled with purified proteins support complete and semi‐conservative replication in extracts from budding yeast cells overexpressing firing factors. Replication requires cyclin‐dependent kinase (CDK) and Dbf4‐dependent kinase (DDK). DDK phosphorylation of Mcm2‐7 does not by itself promote separation of the double hexamer, but is required for the recruitment of firing factors and replisome components in the extract. Plasmid replication does not require a functional replication origin; however, in the presence of competitor DNA and limiting ORC concentrations, replication becomes origin‐dependent in this system. These experiments indicate that Mcm2‐7 double hexamers can be precursors of replication and provide insight into the nature of eukaryotic DNA replication origins.  相似文献   

20.
DNA replication results from the action of a staged set of highly regulated processes. Among the stages of DNA replication, initiation is the key point at which all the G1 regulatory signals culminate. Cdc7 kinase is the critical regulator for the ultimate firing of the origins of initiation. Cdc7, originally identified in budding yeast and later in higher eukaryotes, forms a complex with a Dbf4-related regulatory subunit to generate an active kinase. Genetic evidence in mammals demonstrates essential roles for Cdc7 in mammalian DNA replication. Mini-chromosome maintenance protein (MCM) is the major physiological target of Cdc7. Genetic studies in yeasts indicate additional roles of Cdc7 in meiosis, checkpoint responses, maintenance of chromosome structures, and repair. The interplay between Cdc7 and Cdk, another kinase essential for the S phase, is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号