首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The immunoglobulin (Ig) molecule is composed of two identical heavy chains and two identical light chains (H2L2). Transport of this heteromeric complex is dependent on the correct assembly of the component parts, which is controlled, in part, by the association of incompletely assembled Ig heavy chains with the endoplasmic reticulum (ER) chaperone, BiP. Although other heavy chain-constant domains interact transiently with BiP, in the absence of light chain synthesis, BiP binds stably to the first constant domain (CH1) of the heavy chain, causing it to be retained in the ER. Using a simplified two-domain Ig heavy chain (VH-CH1), we have determined why BiP remains bound to free heavy chains and how light chains facilitate their transport. We found that in the absence of light chain expression, the CH1 domain neither folds nor forms its intradomain disulfide bond and therefore remains a substrate for BiP. In vivo, light chains are required to facilitate both the folding of the CH1 domain and the release of BiP. In contrast, the addition of ATP to isolated BiP-heavy chain complexes in vitro causes the release of BiP and allows the CH1 domain to fold in the absence of light chains. Therefore, light chains are not intrinsically essential for CH1 domain folding, but play a critical role in removing BiP from the CH1 domain, thereby allowing it to fold and Ig assembly to proceed. These data suggest that the assembly of multimeric protein complexes in the ER is not strictly dependent on the proper folding of individual subunits; rather, assembly can drive the complete folding of protein subunits.  相似文献   

2.
Heavy chain-binding protein (BiP) associates posttranslationally with nascent Ig heavy chains in the endoplasmic reticulum (ER) and remains associated with these heavy chains until they assemble with light chains. The heavy chain-BiP complex can be precipitated by antibody reagents against either component. To identify sites on heavy chain molecules that are important for association with BiP, we have examined 30 mouse myelomas and hybridomas that synthesize Ig heavy chains with well characterized deletions. Mutant Ig heavy chains that lack the CH1 domain could not be demonstrated to associate with BiP, whereas mutant Ig heavy chains with deletions of the CH2 or CH3 domain were still able to associate with BiP. In two light chain negative cell lines that produced heavy chains with deletions of the CH1 domain, free heavy chains were secreted. When Ig assembly and secretion were examined in mutants that did not associate with BiP, and were compared with normal parental lines, it was found that the rate of Ig secretion was increased in the mutant lines and that the Ig molecules were secreted in various stages of assembly. In one mutant line (CH1-) approximately one-third of the secreted Ig molecules were incompletely assembled, whereas the Ig molecules secreted by the parental line were completely assembled. Our data show the CH1 domain to be important for association with BiP and that when this association does not occur, incompletely assembled heavy chains can be secreted. This implies a role for BiP in preventing the transport of unassembled Ig molecules from the ER.  相似文献   

3.
A rat monoclonal antibody specific for immunoglobulin (Ig) heavy chain binding protein (BiP) has allowed the examination of the association of BiP with assembling Ig precursors in mouse B lymphocyte-derived cell lines. The anti-BiP monoclonal antibody immunoprecipitates BiP along with noncovalently associated Ig heavy chains. BiP is a component of the endoplasmic reticulum and binds free intracellular heavy chains in nonsecreting pre-B (mu+, L-) cell lines or incompletely assembled Ig precursors in (H+, L+) secreting hybridomas and myelomas. In the absence of light chain synthesis, heavy chains remain associated with BiP and are not secreted. The association of BiP with assembling Ig molecules in secreting hybridomas is transient and is restricted to the incompletely assembled molecules which are found in the endoplasmic reticulum. BiP loses affinity and disassociates with Ig molecules when polymerization with light chain is complete. We propose that the association of BiP with Ig heavy chain precursors is a novel posttranslational processing event occurring in the endoplasmic reticulum. The Ig heavy chains associated with BiP are not efficiently transported from the endoplasmic reticulum to the Golgi apparatus. Therefore, BiP may prevent the premature escape and eventual secretion of incompletely assembled Ig molecules.  相似文献   

4.
5.
Immunoglobulin heavy chain binding protein (BiP/GRP78) is a resident endoplasmic reticulum protein that binds tightly to a number of incompletely assembled or aberrant proteins. BiP also binds ATP and can be purified by ATP affinity chromatography. Here we show that an ATPase activity co-purifies with BiP prepared from canine pancreas. The BiP-associated ATPase has a high affinity for ATP but a low turnover number, suggesting a regulatory, rather than an enzymatic role. We also show that submicromolar levels of ATP or ADP decrease the rate of adsorption of [125I]BiP to nitrocellulose filters coated with protein or non-ionic detergents. In contrast, micromolar levels of AMP increase the rate of adsorption. Furthermore, ATP and ADP decrease the susceptibility of BiP to proteolytic degradation, whereas AMP was found to enhance degradation slightly. Adenine nucleotides may therefore induce or stabilize different conformations of BiP even when ATP hydrolysis does not occur.  相似文献   

6.
The mechanism by which endoplasmic reticulum (ER) stress proteins are induced by the accumulation of incompletely assembled or malfolded proteins in the ER is poorly understood. The 78-kDa glucose-regulated protein (BiP), one of the ER stress proteins, has often been detected in stable complexes with these accumulated proteins. We have transfected COS cells with an immunoglobulin (Ig) mu heavy chain expression plasmid. Expressed mu-chain accumulated in the cells and formed stable complexes with BiP. As a result, the synthesis of three ER stress proteins, BiP, the 94-kDa glucose-regulated protein (GRP94/ERp99), and ERp72, was increased as were their mRNA levels. In addition, the degradation rate of BiP was increased, possibly because of its interaction with mu-chain. Cotransfection of the mu-chain plasmid with an Ig lambda light chain expression plasmid resulted in the appearance of mu-chain in the media in a covalent complex with lambda-chain. An intracellular consequence of this was a reduction in the levels of BiP.mu-chain complex, and a diminished stimulation in the synthesis of the ER stress proteins. These results suggest that the BiP.mu-chain complex in the ER may be involved in the signaling pathway for the induction of ER stress proteins and may represent one regulatory mechanism operating in differentiating B-lymphocytes.  相似文献   

7.
To investigate the function of heavy chain binding protein (BiP, GRP 78) in the endoplasmic reticulum, we have characterized its interaction with a model plasma membrane glycoprotein, the G protein of vesicular stomatitis virus. We used a panel of well characterized mutant G proteins and immunoprecipitation with anti-BiP antibodies to determine if BiP interacted with newly synthesized G protein and/or mutant G proteins retained in the endoplasmic reticulum. We made three major observations: 1) BiP bound transiently to folding intermediates of wild-type G protein which were incompletely disulfide-bonded; 2) BiP did not bind stably to all mutant G proteins which remain in the endoplasmic reticulum; and 3) BiP bound stably only to mutant G proteins which do not form correct intrachain disulfide bonds.  相似文献   

8.
Here we show that not only transport defective but all immunoglobulin light chains interact with BiP. Association of BiP with its ligand takes place during or shortly after translation of the light chains. The biological half life of the BiP-light chain complex depends on the fate of the light chains. Light chains which are secreted interact with BiP for only a very short time. In contrast, the complex is biologically more stable in cells which do not secrete their L chains. In these cells, dissociation from BiP correlates with the biological half life of the L chains arguing for a degradation pathway in the endoplasmic reticulum. Instead of being degraded in association with its ligand, BiP is released from the complex and binds to newly synthesized polypeptides. These results support the notion that both H and L chains require the chaperoning function of BiP before or during the process of antibody assembly.  相似文献   

9.
We recently identified ERdj3 as a component of unassembled immunoglobulin (Ig) heavy chain:BiP complexes. ERdj3 also associates with a number of other protein substrates, including unfolded light chains, a nonsecreted Ig light chain mutant, and the VSV-G ts045 mutant at the nonpermissive temperature. We produced an ERdj3 mutant that was unable to stimulate BiP's ATPase activity in vitro or to bind BiP in vivo. This mutant retained the ability to interact with unfolded protein substrates, suggesting that ERdj3 binds directly to proteins instead of via interactions with BiP. BiP remained bound to unfolded light chains longer than ERdj3, which interacted with unfolded light chains initially, but quickly disassociated before protein folding was completed. This suggests that ERdj3 may bind first to substrates and serve to inhibit protein aggregation until BiP joins the complex, whereas BiP remains bound until folding is complete. Moreover, our findings support a model where interactions with BiP help trigger the release of ERdj3 from the substrate:BiP complex.  相似文献   

10.
Gene transfer of immunoglobulin light chain restores heavy chain secretion   总被引:1,自引:0,他引:1  
Several lines of evidence suggest that immunoglobulin (Ig) light (L) chain plays a role in the secretion of heavy (H) chain. For example, myeloma variant lines, which synthesize the Ig H chain but not the L chain, fail to secrete H chain protein. Here we have tested directly the role of chain assembly in the control of Ig secretion by the transfer of functional L chain genes into two such L chain-defective myeloma mutants. A lambda 2 or kappa L chain gene was introduced into variant lines of the mouse myelomas MOPC 315 (IgA, lambda 2) or PC7 (IgM, kappa), respectively. Although the two mutant lines are unable to secrete the H chain they produce, rescue of secretion of complete Ig protein molecules (IgA or IgM) was observed after transfection. These results imply that the secretory apparatus of these cells is intact and that the failure to secrete free H chain reflects a structural feature intrinsic to that protein. The implications of these results with respect to control of secretion of multi-subunit proteins are discussed.  相似文献   

11.
The Y5606 mouse tumor synthesizing an IgG3, lambda immunoglobulin (Ig) was adapted to continuous growth in tissue culture. The spontaneous mutation rate at the Ig locus (approximately 3 X 10(-5)/cell/generation) in this cell line was found to be less than that in other cultured mouse myeloma lines. Treatment with either ICR-191 or ethyl methanesulfonate (EMS) increased the mutation rate approx. 100-fold. Spontaneous and ICR-191 induced mutants were synthetic variants that is they synthesized either heavy (H) or light (L) chains alone instead of the H and L chains synthesized by the parent. Following EMS treatment assembly variants which were synthesizing structurally altered H chains were isolated in addition to synthetic variants. The assembly variants appear to be a unique consequence of EMS mutagenesis.  相似文献   

12.
Newly synthesized Ig chains are known to interact in vivo with the binding protein (BiP), a major peptide-binding chaperone in the endoplasmic reticulum. The predominant interactions between the light chain and BiP are observed early in the folding pathway, when the light chain is either completely reduced, or has only one disulfide bond. In this study, we describe the in vitro reconstitution of BiP binding to the variable domain of light chains (VL). Binding of deliberately unfolded VL was dramatically more avid than that of folded VL, mimicking the interaction in vivo. Furthermore, VL binding was inhibited by addition of ATP, was competed with excess unlabeled VL, and was demonstrated with several different VL proteins. Using this assay, peptides derived from the VL sequence were tested experimentally for their ability to bind BiP. Four peptides from both beta sheets of VL were shown to bind BiP specifically, two with significantly higher affinity. As few as these two peptide sites, one from each beta sheet of VL, are sufficient to explain the association of BiP with the entire light chain. These results suggest how BiP directs the folding of Ig in vivo and how it may be used in shaping the B cell repertoire.  相似文献   

13.
Immunoglobulin heavy chain binding protein (BiP, GRP 78) coprecipitates with soluble and membrane-associated variants of the T-cell antigen receptor alpha chain (TCR-alpha) which are stably retained within the ER. Chelation of Ca2+ during solubilization of cells leads to the dissociation of BiP from the TCR-alpha variants, which is dependent upon the availability of Mg2+ and hydrolyzable ATP; this suggests that Ca2+ levels can serve to modulate the association/dissociation of these proteins with BiP. In vivo treatment of cells expressing either the soluble or membrane-anchored TCR-alpha variants with the Ca2+ ionophore, A23187, or an inhibitor of an ER Ca(2+)-ATPase, thapsigargin, or the membrane-permeant Ca2+ chelator BAPTA-AM, results in the redistribution of these proteins out of the ER and their subsequent secretion or cell surface expression. Under the same assay conditions, no movement of BiP out of the ER is observed. Taken together, these observations indicate that decreased Ca2+ levels result in the dissociation of a protein bound to BiP, leading to its release from ER retention. These data suggest that the intracellular fate of newly synthesized proteins stably associated with BiP can be regulated by Ca2+ levels in the ER.  相似文献   

14.
Immunoglobulin heavy chain-binding protein (BiP) is a member of the hsp70 family of chaperones and one of the most abundant proteins in the ER lumen. It is known to interact transiently with many nascent proteins as they enter the ER and more stably with protein subunits produced in stoichiometric excess or with mutant proteins. However, there also exists a large number of secretory pathway proteins that do not apparently interact with BiP. To begin to understand what controls the likelihood that a nascent protein entering the ER will associate with BiP, we have examined the in vivo folding of a murine λI immunoglobulin (Ig) light chain (LC). This LC is composed of two Ig domains that can fold independent of the other and that each possess multiple potential BiP-binding sequences. To detect BiP binding to the LC during folding, we used BiP ATPase mutants, which bind irreversibly to proteins, as “kinetic traps.” Although both the wild-type and mutant BiP clearly associated with the unoxidized variable region domain, we were unable to detect binding of either BiP protein to the constant region domain. A combination of in vivo and in vitro folding studies revealed that the constant domain folds rapidly and stably even in the absence of an intradomain disulfide bond. Thus, the simple presence of a BiP-binding site on a nascent chain does not ensure that BiP will bind and play a role in its folding. Instead, it appears that the rate and stability of protein folding determines whether or not a particular site is recognized, with BiP preferentially binding to proteins that fold slowly or somewhat unstably.  相似文献   

15.
The initial step of intermolecular covalent assembly of immunoglobulins molecules involves formation of heavy chain-light chain or heavy chain-heavy chain disulfide bonds. Using QAE-Sephadex chromatography to isolate microsomal nascent polypeptides, we have shown that this initial step of intermolecular covalent assembly occurs, to a substantial extent, on nascent heavy chains, as well as on completed heavy chains as previously demonstrated by others. In MPC 11 mouse myeloma cells, completed light chains are assembled covalently to nascent heavy chains, whereas in MOPC 21 mouse myeloma cells, completed heavy chains are assembled covalently to nascent heavy chains. These results are consisted with the heavy-light half-molecule being the major initial intermediate in the assembly of MPC 11 IgG2b and heavy-heavy dimer being the major initial intermediate formed in assembly of MOPC 21 IgG1. The nascent MPC 11 heavy chain must be at least 38,000 daltons in size before assembly with the light chain occurs, even though the heavy chain cysteine involved in this disulfide bond is 131 residues (approximately 15,000 daltons) from the NH2 terminus. In addition, pulse-chase labeling studies of MPC 11 cells have shown that the assembly of completed light chains with the nascent heavy chain must occur within a few minutes of the synthesis of the light chain even though a large excess of unassembled MPC 11 light chains remain inside the cell for an average time of 2 h before being secreted.  相似文献   

16.
Class II molecules of the major histocompatibility complex (MHC) are composed of two polymorphic glycoprotein chains (alpha and beta), that associate in the ER with a third, non-polymorphic glycoprotein known as the invariant chain (Ii). We have examined the relationship between the intracellular transport and physico-chemical characteristics of various combinations of murine alpha, beta and Ii chains. Biochemical and morphological analyses of transfected fibroblasts expressing class II MHC chains show that both unassembled alpha and beta chains, as well as a large fraction of alpha+beta complexes synthesized in the absence of Ii chain, are retained in the ER in association with the immunoglobulin heavy chain binding protein, BiP. Analyses by sedimentation velocity on sucrose gradients show that most incompletely assembled class II MHC species exist as high molecular weight aggregates in both transfected fibroblasts and spleen cells from mice carrying a disruption of the Ii chain gene. This is in contrast to the sedimentation properties of alpha beta Ii complexes from normal mice, which migrate as discrete, stoichiometric complexes of M(r) approximately 200,000-300,000. These observations suggest that assembly with the Ii chain prevents accumulation of aggregated alpha and beta chains in the ER, which might relate to the known ability of the Ii chain to promote exit of class II MHC molecules from the ER.  相似文献   

17.
We have previously prepared human anti-double-stranded (ds) DNA IgG Fab clones using phage-display technology. Nucleotide sequence analysis of genes of immunoglobulin (Ig) heavy and light chain variable regions in these Fab clones suggested that the DNA-binding activity of the clones depended on light chain usage. To confirm the role of the light chain in antibody binding to DNA, we constructed in the present study's new recombined Fab clones by heavy and light chain shuffling between the original anti-dsDNA Fab clones. Clones constructed by pairing Fdgamma fragments with the light chain from a high DNA-binding clone showed high DNA-binding activities, whereas other constructed clones using light chains from low DNA-binding clones showed low DNA-binding activities. Our results indicate that light chains in anti-dsDNA antibodies can determine the DNA-binding activity of the antibodies. Ig chain shuffling of phage-display antibodies may be useful for investigating the molecular mechanisms for antigen-antibody binding of human autoantibodies.  相似文献   

18.
Clathrin heavy and light chains form triskelia, which assemble into polyhedral coats of membrane vesicles that mediate transport for endocytosis and organelle biogenesis. Light chain subunits regulate clathrin assembly in vitro by suppressing spontaneous self-assembly of the heavy chains. The residues that play this regulatory role are at the N terminus of a conserved 22-amino acid sequence that is shared by all vertebrate light chains. Here we show that these regulatory residues and others in the conserved sequence mediate light chain interaction with Hip1 and Hip1R. These related proteins were previously found to be enriched in clathrin-coated vesicles and to promote clathrin assembly in vitro. We demonstrate Hip1R binding preference for light chains associated with clathrin heavy chain and show that Hip1R stimulation of clathrin assembly in vitro is blocked by mutations in the conserved sequence of light chains that abolish interaction with Hip1 and Hip1R. In vivo overexpression of a fragment of clathrin light chain comprising the Hip1R-binding region affected cellular actin distribution. Together these results suggest that the roles of Hip1 and Hip1R in affecting clathrin assembly and actin distribution are mediated by their interaction with the conserved sequence of clathrin light chains.  相似文献   

19.
Dilated cisternae of the ER resembling Russell Bodies (RBs) are induced in light (L) chain producing myeloma cell lines by transfection of a mu heavy (H) chain gene lacking the first constant domain (mu delta CH1). RBs do not appear to be tissue specific, since they are also induced in a rat glioma cell line transfected with mu delta CH1 and L chain genes. Efficient RB biogenesis requires H-L assembly and polymerization. The mutant Ig is partially degraded in a pre-Golgi compartment. The remnant, however, becomes an insoluble lattice when intersubunit disulphide bonds are formed. The resulting insoluble aggregate accumulates in RBs. Replacing the COOH-terminal cysteine of mu delta CH1 chains with alanine reverses the RB-phenotype: the double mutant mu ala delta CH1 chains assemble noncovalently with L and are secreted as H2L2 complexes. Similarly, secretion of mu delta CH1 chains can be induced by culturing transfectant cells in the presence of reducing agents. The presence of RBs does not alter transport of other secretory or membrane molecules, nor does it affect cell division. Resident proteins of the ER and other secretory proteins are not concentrated in RBs, implying sorting at the ER level. Sorting could be the result of the specific molecular structure of the insoluble lattice. We propose that RBs represent a general response of the cell to the accumulation of abundant, nondegradable protein(s) that fail to exit from the ER.  相似文献   

20.
Consistent with an ordered immunoglobulin (Ig) gene assembly process during precursor (pre-) B cell differentiation, we find that most Abelson murine leukemia virus (A-MuLV)-transformed pre-B cells derived from scid (severe combined immune deficient) mice actively form aberrant rearrangements of their Ig heavy chain locus but do not rearrange endogenous kappa light chain variable region gene segments. However, we have identified several scid A-MuLV transformants that transcribe the germline Ig kappa light chain constant region and actively rearrange the kappa variable region gene locus. In one case progression to the stage of kappa light chain gene rearrangement did not require expression of Ig mu heavy chains; furthermore, this progression could not be efficiently induced following expression of mu heavy chains from an introduced vector. As observed in pre-B cell lines from normal mice, attempted V kappa-to-J kappa rearrangements in scid transformants occur by inversion at least as frequently as by deletion. The inverted rearrangements result in retention of both products of the recombination event in the chromosome, thus allowing their examination. scid kappa coding sequence joins are aberrant and analogous in structure to previously described scid heavy chain coding joins. In contrast, the recognition signals that flank involved coding segments frequently are joined precisely back-to-back in normal fashion. The scid VDJ recombinase defect therefore does not significantly impair recognition of, site-specific cutting at, or juxtaposition and appropriate ligation of signal sequences. Our finding that the scid defect prevents formation of correct coding but not signal joins distinguishes these events mechanistically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号