首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用Gleeble-3800热模拟机,沿与原材料轴线呈0°、45°、90°方向切割试样,在320、400和480℃,变形速率0.01、0.1和1/s时对7075铝合金进行试验。研究了温度、应变速率对7075铝合金热变形过程中力学性能及显微组织的影响。结果表明:在同一应变速率下,7075铝合金的流变应力和进入稳态流动时所需的应变随温度的升高而降低;在低温成形时,晶粒的形状连续而均匀;随着变形温度升高,晶粒逐渐变得粗大;在较高温度变形时,大晶粒周围有细小的等轴晶出现,发生了动态再结晶。在同一变形温度下,7075铝合金的流变应力随应变速率的增大而提高;应变速率越大,越易出现动态再结晶。  相似文献   

2.
模拟了7075-T4铝合金板材的热成形-淬火一体化工艺并进行了高温拉伸试验,以研究合金的高温力学性能和断裂机制。结果表明:在应变速率和温度共同主导下,随着初始拉伸温度的升高,合金的抗拉强度由淬火态的397. 0 MPa下降到了440℃时的68. 3 MPa,断后伸长率由淬火态的15%缓慢升高到了440℃时的26. 1%;在0. 01 s~(-1)以上较高应变速率下,合金的抗拉强度随着应变速率的增大而升高;在0. 01 s~(-1)以下较低应变速率下,合金的抗拉强度随着应变速率的增大而降低。当沿轧制方向拉伸时,合金的抗拉强度和断后伸长率均高于沿与轧制方向呈45°和90°方向拉伸的合金,具有明显的各向异性特征。此外,合金的切向韧性与颈缩延性断裂转折温度约为358℃,断裂机制为微孔聚集型断裂。  相似文献   

3.
《塑性工程学报》2020,(2):87-93
在室温条件下,依次按0°、45°和90°的轧制方向和0. 01、0. 1和1 s-1的应变速率对5182铝合金标准试样进行单向拉伸实验,研究了5182铝合金室温下的成形性能。结果表明,5182铝合金的力学性能受应变速率及轧制方向的影响。同一应变速率下,其抗拉强度和伸长率在轧制方向为0°时最高,屈服强度在90°时最高,但各方向区别不明显;同一轧制方向上,随着应变速率的增大,其抗拉强度及伸长率呈下降趋势,屈服强度呈上升趋势;基于5182铝合金的单向拉伸实验,建立了Fields-Backofen本构方程,此外通过杯突实验,获取了5182铝合金的成形极限曲线,从而为5182铝合金室温冲压成形极限的预测及数值模拟提供理论支持。利用Dynaform模拟某车型汽车前盖内板冲压成形,证明本构方程和成形极限曲线的精度满足工程要求。  相似文献   

4.
采用热模拟试验机对轧制态6082-T6铝合金进行热压缩试验,分析了合金在变形温度100~400 ℃,应变速率0.01 s-1条件下的流变应力,对不同温度热变形的微观组织进行了表征。结果表明,轧制态6082铝合金的力学性能受变形温度和轧制方向的影响。变形过程中应力呈现负的温度敏感性,即随着变形温度升高,应力不断下降。合金表现出明显的力学性能各向异性,压缩强度在与轧制方向呈0°和90°较高,45°方向强度较低。经过热压缩变形后,与轧向呈不同方向的6082-T6铝合金的晶粒组织均沿着剪切力方向发生扭曲,同时,变形温度对晶粒组织的演变影响不大。随着变形温度的升高,合金基体内的位错密度明显下降,析出相发生粗化。  相似文献   

5.
热拉伸变形对AZ21B镁合金板材力学性能与组织的影响   总被引:1,自引:0,他引:1  
沿着与板材轧制方向成不同角度的方向截取试样,研究不同拉伸温度下AZ21B镁合金板材的力学性能和组织。结果表明:与轧制方向成相同角度的AZ21B镁合金板材试样,其综合力学性能因温度的变化而不同,其抗拉强度随温度的升高而下降,伸长率随温度的升高而增大;同时由于轧制会使镁合金板材产生很强板织构,造成板材的力学性能各向异性,当温度在室温(25℃)、150℃、200℃、250℃时,与板材轧制方向成0°试样的抗拉强度最大,当温度在300℃、350℃时,与板材轧制方向成90°试样的抗拉强度最大;在室温至250℃拉伸变形时,出现少量的孪晶,而在250℃以上拉伸变形时发生完全动态回复和再结晶。室温下拉伸试样的断口表现为明显韧脆性断裂。  相似文献   

6.
采用等应变速率拉伸法研究了温度和应变速率对5A90合金超塑性力学性能的影响。结果表明:5A90铝合金最佳变形温度是400℃,在此温度下,不同应变速率条件下,可以获得较大的伸长率,最大伸长率为193.6%;在变形温度为375℃~500℃时,应变速率对5A90铝合金的流变应力及抗拉强度有显著影响,流变应力及抗拉强度随应变速率升高而增大。在同一应变速率下,5A90铝合金流变应力水平随着变形温度的提高而降低。另外,基于Backofen本构方程,对5A90铝合金在不同温度状态下的强化规律进行了分析,结果表明,随变形温度逐渐升高,应变速率敏感性指数先减小后增大,最后得到5A90铝合金最佳超塑性参数为:T=400℃,ε=0.0005s-1。  相似文献   

7.
采用Gleeble-3800型热模拟试验机进行压缩试验,变形温度为320~480℃、应变速率为0.1~1 s-1.压缩方向与7A04铝合金棒材轴向分别成0°、45°、90°.结果表明:7A04铝合金高温变形的流变应力随温度的升高和应变速率的降低而减小;在低温(T=320℃)和小应变速率(ε=0.1 s-1)的条件下7A04铝合金的各向异性最明显;在高温(T=480℃)和小应变速率(ε=0.1 s-1)的条件下,7A04铝合金的各向异性最不明显.  相似文献   

8.
热压缩7075铝合金流变应力特征   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟高温压缩变形试验,研究了7075铝合金高温塑性变形时的流变应力行为.结果表明,应变速率和变形温度的变化影响合金稳态流变应力的大小,在变形温度为350~500℃、应变速率为0.01~1 s^-1的条件下,随变形温度升高,流变应力降低;而随应变速率提高,流变应力增大;应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius关系,可用Zener-Hollomon参数描述7075铝合金高温塑性变形时的流变应力行为.  相似文献   

9.
采用Gleeble-1500热模拟高温压缩变形试验,研究了7075铝合金高温塑性变形时的流变应力行为。结果表明,应变速率和变形温度的变化影响合金稳态流变应力的大小,在变形温度为350~500℃、应变速率为0.01~1s-1的条件下,随变形温度升高,流变应力降低;而随应变速率提高,流变应力增大;应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius关系,可用Zener-Hollomon参数描述7075铝合金高温塑性变形时的流变应力行为。  相似文献   

10.
7075铝合金热压缩变形流变应力   总被引:52,自引:10,他引:42  
在Gleeble-1500热模拟试验机上,采用高温等温压缩试验,对7075铝合金在高温压缩变形中的流变应力行为进行了研究。结果表明,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大;可用Zener-Hollomon参数的指数形式来描述7075铝合金高温压缩变莆时的流变应力行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号