首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
电沉积制备铁-镍因瓦合金的工艺研究   总被引:1,自引:0,他引:1  
采用硫酸盐镀液体系,在紫铜箔上电沉积制备了Fe-Ni合金镀层,研究了镀液成分(如镀液中添加剂含量.Ni2+/Fe2+浓度比)及主要的沉积工艺参数(包括阴极电流密度、温度和搅拌速率)对镀层表面质量、成分及组织的影响.镀液成分及最佳工艺参数为:0.3 mol/L NiSO4·6H2O,0.08 mol/L FeSO4·7H2O,2g/L糖精,0.35 g/L 1,4-丁炔二醇,电流密度3.7 A/dm2,施镀温度40℃,搅拌速率200 r/min.  相似文献   

2.
电沉积Fe-36%Ni磁性合金工艺的研究   总被引:3,自引:0,他引:3  
采用电沉积法制备Fe-36%Ni磁性合金。通过正交实验研究了nFe2 /nNi2 、电流密度、镀液pH值、镀液温度与合金中铁含量的关系,用极差法分析了各工艺参数对Fe—Ni合金镀层成分的影响,并确定了最佳工艺条件为nFe2 /nNi2 0.6,镀液pH值3.5,施镀温度65℃,阴极电流密度6A/dm2。实验结果表明,合金镀液中nnFe2 /nNi2 较大,电流密度增加,pH值升高,均有利于镀层Fe含量的提高:实验所得合金镀层光亮、致密、外观平整,显微结构是层状,镀层中wFe为64.1%,wNi为35.9%,符合Fe-36%Ni合金成分设计要求。  相似文献   

3.
电镀Zn-Fe合金工艺研究   总被引:4,自引:1,他引:3  
介绍了一种电镀Zn-Fe合金的工艺,研究了阴极电流密度、镀液中ρ(Fe2+)/ρ(Zn2+)、pH、温度和添加剂等因素对镀层的外观以及Fe质量分数的影响.实验结果表明,镀层中Fe的质量分数随着镀液中ρ(Fe2+)/ρ(Zn2+)、pH的增大而增大;随着阴极电流密度的增大、温度的升高先增大,达某一值时镀层中Fe的质量分数又随其增大而减小.通过3% NaCl腐蚀试验,比较了Zn-Fe合金和Zn镀层的耐腐蚀性.在最佳工艺条件下所得Zn-Fe合金镀层的耐腐蚀性为Zn镀层的5倍.  相似文献   

4.
镀液温度对脉冲电镀Zn-Ni-Mn合金镀层的影响   总被引:1,自引:0,他引:1  
采用脉冲电镀法在Q235钢表面制备了Zn-Ni-Mn合金镀层。研究了镀液温度(25~40℃)对合金镀层成分、沉积速率、表面形貌和耐蚀性的影响。结果表明,随镀液温度升高,Zn-Ni-Mn合金镀层中锰的质量分数降低,锌和镍的质量分数升高;沉积速率增大;镀液θ为30℃时制备的Zn-Ni-Mn合金镀层晶粒大小均匀,表面平整致密,耐蚀性最好。  相似文献   

5.
研究了pH值、温度、电流密度以及主盐的质量浓度对低温镀铁层沉积速率的影响.结果表明:当pH值为1.0时,镀层的沉积速率最大;随着温度的升高,电流密度的增加或者镀液中主盐的质量浓度的增加,镀层的沉积速率增大.  相似文献   

6.
在铜表面电沉积Ni-Co-Fe合金镀层。通过对塔菲尔曲线、电化学阻抗谱及粗糙度的测试,研究了镀液温度、电流密度和镀液pH值对镀层耐蚀性的影响。结果表明:在镀液温度55℃,电流密度4.0A/dm2,镀液pH值4.0的条件下,所得镀层表面光滑,耐蚀性较好。  相似文献   

7.
铜-钨复合镀层电沉积工艺及其性能   总被引:1,自引:1,他引:0  
采用复合电沉积的方法,通过在镀铜液中加入直径为1~3μm的钨颗粒,在纯铜表面制备了铜_钨复合镀层.研究了镀液中钨质量浓度、阴极电流密度.搅拌速率、镀液温度等工艺参数对镀层中钨质量分数的影响,测定了复合镀层的显微硬度和接触电阻.得到了复合电沉积的最优工艺为:钨质量浓度35 g/L,电流密度4 A/dm2,搅拌强度600 r/min,温度5℃.所得铜-钨复合镀层具有合适的显微硬度(98.5~112.0 Hv)、稳定且较低的接触电阻及较长的电接触寿命,可以取代AgCdO触头.  相似文献   

8.
以钯的质量分数很高为目标,兼顾镀液性能及镀层质量,采用单因素试验对不锈钢基体上电沉积钯-镍合金镀层的工艺参数进行了优化。将工艺参数设置为:pH值8.0、温度35℃、电流密度1.2 A/dm~2、中速搅拌、电沉积时间100 min。在不锈钢基体上制备出钯的质量分数达到70.26%的钯-镍合金镀层。该镀层表面均匀、平整,孔隙率为1.05个/cm~2。  相似文献   

9.
在乙酸盐?铵盐体系电镀锌–镍合金镀液配方中添加次磷酸钠,以45钢为基体电沉积锌–镍–磷合金.通过循环伏安法和小槽电镀实验研究了pH、温度和电流密度对镀层成分的影响,采用扫描电镜、能谱、X射线荧光、X射线衍射等技术对镀层形貌和微观组织进行表征,采用Tafel极化曲线和电化学阻抗谱对镀层的耐蚀性进行测试.结果表明:在不含主盐的基础镀液中,次磷酸钠的P不能被还原出来,而次磷酸钠与Zn2+、Ni2+共存时有助于Ni的沉积,对Zn的沉积无明显影响;温度升高则镀层中Zn减少,Ni和P增多;降低pH有利于锌–镍共沉积;镀层的P含量随电流密度增大而减少.P元素的掺入能完全消除锌?镍合金的裂纹,细化镀层晶粒.低P含量(P质量分数低于1%)的锌–镍–磷合金镀层具有比高P含量(P质量分数大于10%)的镀层更好的耐蚀性.  相似文献   

10.
研究了一种以亚硫酸钠-HEDP为主配位剂的无氰脉冲电镀金-铜合金工艺。通过单因素试验考察了镀层表面形貌和沉积速率,并得出电流密度、镀液pH值、镀液温度和搅拌速率的影响规律及一组优选电镀工艺参数:电流密度0.3A/dm~2,镀液pH值9.0,镀液温度60℃,搅拌速率1 000r/min。另外,评价了镀层和镀液的各方面性能。结果表明:镀层仅含金、铜元素;镀层表面细致均匀,孔隙率低,平整性好,无裂纹;镀层硬度高,结合力好,耐蚀性强;电流效率高,镀液稳定性好。  相似文献   

11.
考察了电流密度、镀液温度、镀液pH值和搅拌速率对镀镍层表面粗糙度的影响,并对氨基磺酸盐镀镍工艺进行优化。最优工艺条件为:电流密度8A/dm2,镀液温度45℃,镀液pH值5.0,搅拌速率0.5m/s。在该条件下施镀,获得的镀镍层平整、光亮,表面粗糙度约为0.63μm,并且微观组织致密。  相似文献   

12.
采用中温酸性化学镀工艺在低碳钢表面镀Ni-P合金,并以沉积速率为评价指标,采用正交试验法进行工艺优化。确定最优镀液配方与工艺条件为:nNi2+∶nPO2-20.40,乳酸20mL/L,冰乙酸10mL/L,乙酸钠15mL/L,pH值5.3,(75±2)℃。结果表明:在最优镀液配方与工艺条件下,沉积速率达到20μm/h,获得的Ni-P合金均匀致密、与基体结合牢固且耐蚀性良好,其中磷的质量分数约为9.1%。  相似文献   

13.
工艺参数对电镀镍铜合金镀层成分及相结构的影响   总被引:1,自引:0,他引:1  
杨瑞嵩  李明田  王莹  鲁越 《电镀与涂饰》2014,33(15):633-635
采用由200 g/L NiSO4·6H2O、10 g/L CuSO4·5H2O、80 g/L Na3C6H5O7·2H2O、0.2 g/L C12H25SO4Na和0.5 g/L糖精钠组成的镀液,在10~60 mA/cm2、pH=2.5~5.0和25~50°C条件下电沉积制备了NiCu合金镀层。探讨了镀液pH、电流密度、温度等工艺参数对镍铜合金镀层相结构和组成的影响。结果表明,NiCu合金镀层的铜含量随电流密度或温度升高而增大。但随pH增大,镀层铜含量降低,pH小于4.0时,NiCu合金镀层中含有单质铜。  相似文献   

14.
低速电沉积钯镍合金工艺的研究   总被引:2,自引:0,他引:2  
通过极化曲线研究了钯、镍的电沉积行为.讨论了钯镍浓度比、pH值、电流密度、沉积电势等工艺参数对低速电沉积钯镍合金组成的影响.结果表明:与钯相比,镍的极化大,极化度也大;电沉积合金时,钯催化镍的沉积,而镍阻化钯的沉积.合金组成是各工艺参数的函数,镀液中钯、镍离子浓度比是影响合金成分的主要因素.随着镀液中Ni/Pd值的增大,合金中镍含量呈线性增加;pH值升高,合金中镍含量降低;电流密度增大或者沉积电势负移,合金中镍含量增加;沉积电势对合金成分的影响更显著,成分更易控制.  相似文献   

15.
采用不含添加剂的氯化物镀液电沉积锌层,探讨了电流密度、镀液温度和镀液pH值对镀层表面粗糙度的影响规律,并优选出最佳的工艺参数。结果表明:在电流密度1A/dm2,镀液温度50℃,镀液pH值5.5的条件下,所得镀层的表面粗糙度最低,约为1.267μm。  相似文献   

16.
Ni-Fe-TiO2复合镀层制备工艺研究   总被引:1,自引:0,他引:1  
采用电沉积方法在低碳钢上制备了Ni–Fe–TiO2复合镀层。研究了镀液中TiO2微粒含量、电流密度、温度、搅拌速率等工艺条件对复合镀层析氢性能的影响。结果表明,在温度为30°C,TiO2加入量为50g/L,电流密度为25mA/cm2,搅拌速率为300r/min时,可获得活性最佳的复合镀层。扫描电镜观察表明,镀层外观均匀,但微观表面粗糙。  相似文献   

17.
采用测厚法和恒电流沉积法,分别研究了镀液温度、阴极电流密度和添加剂对氨基磺酸盐镀镍的沉积速率与电流效率的影响。结果显示:在镀液中不含任何添加剂的前提下,镀镍的沉积速率和电流效率均随镀液温度的升高及阴极电流密度的增大明显提高,最高分别达到0.027 3μm/s和73.4%;而在电镀工艺参数相同的条件下,向镀液中加入适量的添加剂,镀镍的沉积速率和电流效率均略有提高。  相似文献   

18.
针对Cu-Sn-Zn合金镀层自润滑性能差的缺点,在Cu-Sn-Zn合金镀液中加入聚四氟乙烯(PTFE)乳液,采用电沉积方法在45#钢表面制备了Cu-Sn-Zn-PTFE复合镀层。镀液组成和工艺条件为:焦磷酸铜24g/L,氯化锌12g/L,甲基磺酸锡15g/L,焦磷酸钾20g/L,酒石酸钾钠22g/L,全氟辛基磺酸钾18g/L,PTFE乳液32g/L,温度50~60℃,pH值11.5,电流密度1.2A/dm~2,搅拌转速300~600r/min,时间120min。考察了镀液中PTFE的质量浓度对镀层的耐磨性、显微硬度、结合力、PTFE的质量分数、外观的影响,并表征了Cu-Sn-Zn-PTFE复合镀层的表面形貌、结构和成分。随着镀液中PTFE的质量浓度的增加,镀层的耐磨性改善,显微硬度和结合力下降,PTFE的质量分数先增大然后保持不变。镀液中PTFE的最佳质量浓度为32g/L,在此条件下制得的Cu-Sn-Zn-PTFE复合镀层的综合性能最佳。  相似文献   

19.
以紫铜片为基体电沉积制备了Ni–Fe–W合金电极。研究了镀液中不同组分的浓度和工艺条件对Ni–Fe–W合金析氢性能的影响,得到最佳镀液配方和工艺条件为:NiSO4·6H2O80g/L,FeSO4·7H2O20g/L,Na2WO4·2H2O0.020mol/L,Na3C6H5O7·2H2O 0.5 mol/L,H3BO3 0.65 mol/L,Na2SO4 0.1 mol/L,十二烷基硫酸钠0.1 g/L,pH 5~6,温度30°C,电流密度4 A/dm2,磁力搅拌800 r/min,时间30 min。在该条件下所得Ni–Fe–W合金电极表面Ni、Fe和W的原子分数为63.79%、34.35%和1.86%,具有较大的比表面积,在30%KOH溶液中的析氢催化活性较好。  相似文献   

20.
通过正交试验和单因素试验,发现电沉积纳米晶Co-B合金的镀速随镀液温度的升高、电流密度的增大、pH的增加而增大。在镀液稳定范围内,随硫酸钴、硼氢化钠质量浓度的增加而增大,随酒石酸钠质量浓度的增加而减小,当四硼酸钠达到一定质量浓度时,对镀速影响较小。在研究范围内所得合金膜全部为非晶态,扫描电子显微镜和扫描隧道电子显微镜观察发现,非晶镀层是由纳米相微粒构成微米级的二次颗粒,二次颗粒堆砌形成薄膜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号