首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present a novel scalable video transmission strategy over multi-input multi-output (MIMO) wireless systems with time-varying channel capacity. It is a great challenge to simultaneously guarantee the QoS for video delivery and maximize the system throughput over time-varying MIMO channel. We demonstrate that, by making full use of estimated channel state information (CSI) through feedback, a cascade of adaptive operations can be designed to satisfy maximum throughput for scalable video over MIMO systems. These operations include power allocation based on water-filling (WF), adaptive channel selection (ACS), and novel throughput maximizing power reallocation (PR). The proposed ACS transmission scheme enables overall increase in data throughput among enhancement layers by adaptively launching base layer bit-stream to proper sub-channel. Then, after initial power allocation with WF and proper adaptive mode selection, we obtain the surplus power across enhancement layer sub-channels which can be reallocated to some sub-channels by the proposed PR scheme. With such power reallocation, certain enhancement layers will be able to reach new level of QAM modulation through PR so as to maximize the system data throughput. We present in this paper some detailed analysis on these adaptive operations. We also present some simulation results to demonstrate that maximum throughput video transmission over MIMO wireless systems indeed can be achieved based on scalable video coding (SVC) and a sequence of appropriately designed adaptive operations.  相似文献   

2.
Scalable video coding (SVC) has been standardized as an extension of the H.264/AVC standard. This paper proposes a practical real‐time transport protocol (RTP) packetization scheme to transport SVC video over IP networks. In combined scalability of SVC, a coded picture of a base or scalable enhancement layer is produced as one or more video layers consisting of network abstraction layer (NAL) units. The SVC NAL unit header contains a (DID, TID, QID) field to identify the association of each SVC NAL unit with its scalable enhancement layer without parsing the payload part of the SVC NAL unit. In this paper, we utilize the (DID, TID, QID) information to derive hierarchical spatio‐temporal relationship of the SVC NAL units. Based on the derivation using the (DID, TID, QID) field, we propose a practical RTP packetization scheme for generating single RTP sessions in unicast and multicast transport of SVC video. The experimental results indicate that the proposed packetization scheme can be efficiently applied to transport SVC video over IP networks with little induced delay, jitter, and computational load.  相似文献   

3.
We propose a cross-layer framework for efficient multi-layer-video multicast with rate adaptation and quality-of-service (QoS) requirements in multirate wireless networks. We employ time division multiple access at the physical layer to transmit different video layers' data. The multicast sender then dynamically regulates the transmission rate and time-slot allocation based on the channel state information (CSI) and loss QoS requirements imposed by upper protocol layers. Under our proposed cross-layer framework, we first design a rate adaptation algorithm to fulfill the diverse loss QoS requirements for all video layers while achieving high multicast throughput. We then develop a time-slot allocation scheme which synchronizes data transmission across different video layers. Also conducted are simulation results to validate and evaluate our designed adaptive multicasting schemes under the proposed cross-layer framework.  相似文献   

4.
5.
In this paper, we consider the rate-distortion optimized resource allocation for video transmission over multi-rate wireless direct-sequence code-division-multiple-access (DS-CDMA) channels. We consider the performance of transmitting scalable video over a multipath Rayleigh fading channel via a combination of multi-code multirate CDMA and variable sequence length multirate CDMA channel system. At the receiver, despreading is done using adaptive space-time auxiliary-vector (AV) filters. We propose a new interference cancelling design that uses just a single AV filter for single-user mutirate despreading. Our experimental results show that the proposed interference cancelling design has excellent performance in scalable video transmission over DS-CDMA systems that use a combination of multicode multirate and variable processing gain multirate CDMA. The proposed design takes advantage of the fact that single user's video data is transmitted using two spreading codes, one for the base layer and one for the enhancement layers, and of the fact that these spreading codes can have different processing gains. The proposed interference cancelling design is compared with two conventional single-user multirate CDMA receiver configurations, however now we use an AV filter rather than a simple matched filter. We also propose a resource allocation algorithm for the optimal determination of source coding rate, channel coding rate and processing gain for each scalable layer, in order to minimize the expected distortion at the receiver.  相似文献   

6.
Orthogonal frequency division multiplexing (OFDM) has been applied in broadband wireline and wireless systems for high data rate transmission where severe intersymbol interference (ISI) always occurs. The conventional OFDM system provides advantages through conversion of an ISI channel into ISI-free subchannels at multiple frequency bands. However, it may suffer from channel spectral s and heavy data rate overhead due to cyclic prefix insertion. Previously, a new OFDM framework, the precoded OFDM, has been proposed to mitigate the above two problems through precoding and conversion of an ISI channel into ISI-free vector channels. In this paper, we consider the application of the precoded OFDM system to efficient scalable video transmission. We propose to enhance the precoded OFDM system with adaptive vector channel allocation to provide stronger protection against errors to more important layers in the layered bit stream structure of scalable video. The more critical layers, or equivalently, the lower layers, are allocated vector channels of higher transmission quality. The channel quality is characterized by Frobenius norm metrics; based on channel estimation at the receiver. The channel allocation information is fed back periodically to the transmitter through a control channel. Simulation results have demonstrated the robustness of the proposed scheme to noise and fading inherent in wireless channels.  相似文献   

7.
A joint resource-optimization scheme is investigated for nonorthogonal multiple access (NOMA)-enhanced scalable video coding (SVC) multicast in unmanned aerial vehicle (UAV)-assisted radio-access networks (RANs). This scheme allows a ground base station and UAVs to simultaneously multicast successive video layers in SVC with successive interference cancellation in NOMA. A video quality-maximization problem is formulated as a mixed-integer nonlinear programming problem to determine the UAV deployment and association, RAN spectrum allocation for multicast groups, and UAV transmit power. The optimization problem is decoupled into the UAV deployment–association, spectrum-partition, and UAV transmit-power–control subproblems. A heuristic strategy is designed to determine the UAV deployment and association patterns. An upgraded knapsack algorithm is developed to solve spectrum partition, followed by fast UAV power fine-tuning to further boost the performance. The simulation results confirm that the proposed scheme improves the average peak signal-to-noise ratio, aggregate video-reception rate, and spectrum utilization over various baselines.  相似文献   

8.
In this study, a channel selection algorithm is proposed to enhance the transmission rate for scalable video coding (SVC) source transmission over multi-input multi-output (MIMO) wireless systems. The proposed algorithm allows each layer of SVC video to choose its appropriate channel in wireless MIMO systems based on channel state information for transmission rate enhancement. Here, this difficult problem is converted into mathematical optimization problem to improve the performance of SVC video transmission. Experimental results show that the transmission rate of the proposed method outperforms the existing scheme.  相似文献   

9.
In this paper, we analyze the performance of multicast orthogonal frequency division multiplexing (OFDM) systems with single and multiple transmit antennas. We show that the resource allocation that includes the subcarrier allocation, bit loading, and the precoding vector selection in the multiple-input single-output (MISO) case is a difficult optimization problem. Consequently, we propose suboptimal algorithms based on the maximization of the sum data rate and the maximization of the minimum user data rate criteria. For practical application, we consider a complete transmission chain by combining powerful erasure codes with the proposed algorithms. Using this scheme, we guarantee that each user receives the same amount of information to decode the same data. Simulation results show that, for both single-input single-output (SISO)–OFDM and MISO–OFDM cases, the proposed multicast OFDM systems achieve gains over the worst user case algorithm.  相似文献   

10.
Single frequency network (SFN) can provide Multimedia Broadcast Multicast Service (MBMS) over a large coverage area, so it receives more and more attention from both academia and industry. However, the application of SFN is still restricted by a large number of feedbacks. Therefore, we propose a novel multicast resource allocation algorithm based on limited feedback scheme. In the algorithm, we first design a user limited feedback scheme based on channel gain threshold to effectively reduce feedback load. The scheme determines to which base stations users should report channel state information. Next, to overcome the MBMS capacity limitation drawback, we encode the MBMS data into a base layer and multiple enhancement layers and develop a joint subcarrier and power allocation strategy to maximize the throughput of enhancement layers while guaranteeing the rate requirement of base layer. Simulation results show that the proposed algorithm significantly reduces 83 % of the feedback overhead while achieving a comparable multicast throughput performance to the case of full feedback.  相似文献   

11.
Transmit power adaptation for multiuser OFDM systems   总被引:47,自引:0,他引:47  
In this paper, we develop a transmit power adaptation method that maximizes the total data rate of multiuser orthogonal frequency division multiplexing (OFDM) systems in a downlink transmission. We generally formulate the data rate maximization problem by allowing that a subcarrier could be shared by multiple users. The transmit power adaptation scheme is derived by solving the maximization problem via two steps: subcarrier assignment for users and power allocation for subcarriers. We have found that the data rate of a multiuser OFDM system is maximized when each subcarrier is assigned to only one user with the best channel gain for that subcarrier and the transmit power is distributed over the subcarriers by the water-filling policy. In order to reduce the computational complexity in calculating water-filling level in the proposed transmit power adaptation method, we also propose a simple method where users with the best channel gain for each subcarrier are selected and then the transmit power is equally distributed among the subcarriers. Results show that the total data rate for the proposed transmit power adaptation methods significantly increases with the number of users owing to the multiuser diversity effects and is greater than that for the conventional frequency-division multiple access (FDMA)-like transmit power adaptation schemes. Furthermore, we have found that the total data rate of the multiuser OFDM system with the proposed transmit power adaptation methods becomes even higher than the capacity of the AWGN channel when the number of users is large enough.  相似文献   

12.
Multiuser OFDM with adaptive subcarrier, bit, and power allocation   总被引:68,自引:0,他引:68  
Multiuser orthogonal frequency division multiplexing (OFDM) with adaptive multiuser subcarrier allocation and adaptive modulation is considered. Assuming knowledge of the instantaneous channel gains for all users, we propose a multiuser OFDM subcarrier, bit, and power allocation algorithm to minimize the total transmit power. This is done by assigning each user a set of subcarriers and by determining the number of bits and the transmit power level for each subcarrier. We obtain the performance of our proposed algorithm in a multiuser frequency selective fading environment for various time delay spread values and various numbers of users. The results show that our proposed algorithm outperforms multiuser OFDM systems with static time-division multiple access (TDMA) or frequency-division multiple access (FDMA) techniques which employ fixed and predetermined time-slot or subcarrier allocation schemes. We have also quantified the improvement in terms of the overall required transmit power, the bit-error rate (BER), or the area of coverage for a given outage probability  相似文献   

13.
多媒体多播系统中的动态资源分配技术以其有效利用系统资源,及满足具有差异性信道条件的多用户需求而受到业内广泛研究和重视。针对MRA_LCG算法和MRA_GAT算法存在的弊端,提出了MRA_FCF算法,利用灵活可控的速率均衡因子使得高速率多媒体信息向低速率上分流。仿真结果表明,所提MRA_FCF算法获得的吞吐量明显优于MRA_LCG算法的,且同时在保证组内用户公平性方面比MRA_GAT算法具有优势。  相似文献   

14.
In recent years, the development of multimedia devices has meant that a wider multimedia streaming service can be supported, and there are now many ways in which TV channels can communicate with different terminals. Generally, scalable video streaming is known to provide more efficient channel capacity than simulcast video streaming. Simulcast video streaming requires a large network bandwidth for all resolutions, but scalable video streaming needs only one flow for all resolutions. In previous research, scalable video streaming has been compared with simulcast video streaming for network channel capacity, in two user simulation environments. The simulation results show that the channel capacity of SVC is 16% to 20% smaller than AVC, but scalable video streaming is not efficient because of the limit of the present network framework. In this paper, we propose a new network framework with an SVC extractor. The proposed network framework shows a channel capacity 50% (maximum) lower than that found in previous research studies.  相似文献   

15.
16.
为缓解基站的视频流量过载,本文针对时延敏感的实时视频业务,设计一种D2D协作视频多播传输方案。该方案采用可伸缩视频编码(Scalable Video Coding, SVC)对视频流进行编码处理,利用SVC流的分层结构特征来应对多播信道间的差异性。在SVC编码的基础上,为了改善用户观看体验及提升用户所接收的视频质量,所提出的协作式视频传输方案引入有效吞吐量这一概念,在一定时延约束下,根据信道反馈信息灵活地对不同信道上的不同SVC视频层进行码率调整。仿真结果表明,所提出的方案能够有效地减小端到端时延,有效丢失率,提高有效吞吐量。   相似文献   

17.
Performance of an orthogonal frequency division multiplexing (OFDM) system is greatest when the exact channel state information (CSI) is used for transmitter rate control and power allocation. However, in real systems CSI can only be approximately known. Moreover, in video communication, it can be difficult to use any CSI for rate control of a video codec if the channel changes significantly during a group of pictures coded jointly, such as when the receiver is moving. We address this issue through a hybrid digital–analog (HDA) coding system where a standard video codec is used to generate a fixed-rate base layer upon which the analog quantization error is superimposed as a refinement layer. The system adapts to channel variations by proper transmit-power allocation between digital and analog components and across OFDM subcarriers, based on CSI. We present a power allocation scheme for this system which explicitly takes into account the imprecise nature of the available CSI. Experimental results obtained with simulated OFDM channel traces show that proposed scheme is able to achieve a much better quality-vs-reliability trade-off in video transmission, compared to the best known digital-only and analog-only alternatives.  相似文献   

18.
In this paper, we propose a resource allocation scheme to minimize transmit power for multicast orthogonal frequency division multiple access systems. The proposed scheme allows users to have different symbol error rate (SER) across subcarriers and guarantees an average bit error rate and transmission rate for all users. We first provide an algorithm to determine the optimal bits and target SER on subcarriers. Because the worst‐case complexity of the optimal algorithm is exponential, we further propose a suboptimal algorithm that separately assigns bit and adjusts SER with a lower complexity. Numerical results show that the proposed algorithm can effectively improve the performance of multicast orthogonal frequency division multiple access systems and that the performance of the suboptimal algorithm is close to that of the optimal one. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
We consider the problem of optimal power allocation and optimal user selection in a layered multicast transmission over quasi‐static Rayleigh fading channels. A scheme based on superposition coding is proposed in which basic multicast streams and enhanced multicast streams are superimposed and transmitted by a base station, while users with worse channel conditions can only decode basic multicast streams, and users with better channel conditions can decode both basic and enhanced multicast streams. In this paper, subject to fixed user selection ratios, the optimal power allocation for each stream that maximizes average throughput is investigated, and the impact of power allocation on average outage probability is discussed. Finally, subject to fixed transmit power and power allocation, the optimal user selection ratio for enhanced multicast streams is also studied. Numerical results show that the optimized layered multicast scheme outperforms the conventional multicast scheme in terms of average throughput. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
While eight-bit playback and display devices will be dominating the marketplaces in the near future, superior visual quality by high bit-depth videos is desirable for applications such as high standard entertainment and healthcare. Hence, conventional eight-bit and high bit-depth digital imaging systems will coexist in marketplaces. Content distributors supporting both of them need to provide different contents for different users, e.g., simulcastly code the different representations for the same video content. This requires more storage or bandwidth for video content delivery. Bit-depth scalability is an efficient tool to solve this problem. However, video coding techniques can allow flexible usage of various versions of the same visual content that may have spatial resolutions and even alterations in color. In this paper, we propose a bit-depth scalable coding solution that is compatible to the scalable extension of H.264/AVC, also known as Scalable Video Coding (SVC). The proposed bit-depth scalable coding is capable of providing an 8-bit AVC main profile or high profile compliant base layer which is multiplexed with a high bit depth (e.g., 10-, 12-, or up to 14-bit) enhancement layer through macroblock level inter-layer bit-depth prediction. New decoding processes for inter-layer bit-depth prediction are introduced to enable bit-depth scalability. Combination with other types of scalability: temporal, spatial and SNR scalability, as well as single-loop decoding is also supported since our algorithm is implemented based on the up-to-date SVC reference software. Furthermore, the proposed solution supports adaptive inter-layer prediction to determine whether or not the inter-layer bit-depth prediction shall be invoked for each Macroblock. The coding efficiency of the proposed bit-depth scalable coding can be further improved by incorporating advanced inter-layer bit-depth prediction algorithms. Experimental results are presented for 8-bit to high bit (10 or 12) scalability and also the combined bit-depth and spatial scalability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号