首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The seasonal prediction skill of the Asian summer monsoon is assessed using retrospective predictions (1982–2009) from the ECMWF System 4 (SYS4) and NCEP CFS version 2 (CFSv2) seasonal prediction systems. In both SYS4 and CFSv2, a cold bias of sea-surface temperature (SST) is found over the equatorial Pacific, North Atlantic, Indian Oceans and over a broad region in the Southern Hemisphere relative to observations. In contrast, a warm bias is found over the northern part of North Pacific and North Atlantic. Excessive precipitation is found along the ITCZ, equatorial Atlantic, equatorial Indian Ocean and the maritime continent. The southwest monsoon flow and the Somali Jet are stronger in SYS4, while the south-easterly trade winds over the tropical Indian Ocean, the Somali Jet and the subtropical northwestern Pacific high are weaker in CFSv2 relative to the reanalysis. In both systems, the prediction of SST, precipitation and low-level zonal wind has greatest skill in the tropical belt, especially over the central and eastern Pacific where the influence of El Nino-Southern Oscillation (ENSO) is dominant. Both modeling systems capture the global monsoon and the large-scale monsoon wind variability well, while at the same time performing poorly in simulating monsoon precipitation. The Asian monsoon prediction skill increases with the ENSO amplitude, although the models simulate an overly strong impact of ENSO on the monsoon. Overall, the monsoon predictive skill is lower than the ENSO skill in both modeling systems but both systems show greater predictive skill compared to persistence.  相似文献   

2.
The seasonal prediction skill for the Northern Hemisphere winter is assessed using retrospective predictions (1982–2010) from the ECMWF System 4 (Sys4) and National Center for Environmental Prediction (NCEP) CFS version 2 (CFSv2) coupled atmosphere–ocean seasonal climate prediction systems. Sys4 shows a cold bias in the equatorial Pacific but a warm bias is found in the North Pacific and part of the North Atlantic. The CFSv2 has strong warm bias from the cold tongue region of the eastern Pacific to the equatorial central Pacific and cold bias in broad areas over the North Pacific and the North Atlantic. A cold bias in the Southern Hemisphere is common in both reforecasts. In addition, excessive precipitation is found in the equatorial Pacific, the equatorial Indian Ocean and the western Pacific in Sys4, and in the South Pacific, the southern Indian Ocean and the western Pacific in CFSv2. A dry bias is found for both modeling systems over South America and northern Australia. The mean prediction skill of 2 meter temperature (2mT) and precipitation anomalies are greater over the tropics than the extra-tropics and also greater over ocean than land. The prediction skill of tropical 2mT and precipitation is greater in strong El Nino Southern Oscillation (ENSO) winters than in weak ENSO winters. Both models predict the year-to-year ENSO variation quite accurately, although sea surface temperature trend bias in CFSv2 over the tropical Pacific results in lower prediction skill for the CFSv2 relative to the Sys4. Both models capture the main ENSO teleconnection pattern of strong anomalies over the tropics, the North Pacific and the North America. However, both models have difficulty in forecasting the year-to-year winter temperature variability over the US and northern Europe.  相似文献   

3.
This work evaluates the skill of retrospective predictions of the second version of the NCEP Climate Forecast System (CFSv2) for the North Atlantic sea surface temperature (SST) and investigates the influence of El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) on the prediction skill over this region. It is shown that the CFSv2 prediction skill with 0–8 month lead displays a “tripole”-like pattern with areas of higher skills in the high latitude and tropical North Atlantic, surrounding the area of lower skills in the mid-latitude western North Atlantic. This “tripole”-like prediction skill pattern is mainly due to the persistency of SST anomalies (SSTAs), which is related to the influence of ENSO and NAO over the North Atlantic. The influences of ENSO and NAO, and their seasonality, result in the prediction skill in the tropical North Atlantic the highest in spring and the lowest in summer. In CFSv2, the ENSO influence over the North Atlantic is overestimated but the impact of NAO over the North Atlantic is not well simulated. However, compared with CFSv1, the overall skills of CFSv2 are slightly higher over the whole North Atlantic, particularly in the high latitudes and the northwest North Atlantic. The model prediction skill beyond the persistency initially presents in the mid-latitudes of the North Atlantic and extends to the low latitudes with time. That might suggest that the model captures the associated air-sea interaction in the North Atlantic. The CFSv2 prediction is less skillful than that of SSTA persistency in the high latitudes, implying that over this region the persistency is even better than CFSv2 predictions. Also, both persistent and CFSv2 predictions have relatively low skills along the Gulf Stream.  相似文献   

4.
A principal component decomposition of monthly sea surface temperature (SST) variability in the tropical Pacific Ocean demonstrates that nearly all of the linear trends during 1950–2010 are found in two leading patterns. The first SST pattern is strongly related to the canonical El Niño-Southern Oscillation (ENSO) pattern. The second pattern shares characteristics with the first pattern and its existence solely depends on the presence of linear trends across the tropical Pacific Ocean. The decomposition also uncovers a third pattern, often referred to as ENSO Modoki, but the linear trend is small and dataset dependent over the full 61-year record and is insignificant within each season. ENSO Modoki is also reflected in the equatorial zonal SST gradient between the Niño-4 region, located in the west-central Pacific, and the Niño-3 region in the eastern Pacific. It is only in this zonal SST gradient that a marginally significant trend arises early in the Northern Hemisphere spring (March–May) during El Niño and La Niña and also in the late summer (July–September) during El Niño. Yet these SST trends in the zonal gradient do not unequivocally represent an ENSO Modoki-like dipole because they are exclusively associated with significant positive SST trends in either the eastern or western Pacific, with no corresponding significant negative trends. Insignificant trends in the zonal SST gradient are evident during the boreal wintertime months when ENSO events typically mature. Given the presence of positive SST trends across much of the equatorial Pacific Ocean, using fixed SST anomaly thresholds to define ENSO events likely needs to be reconsidered.  相似文献   

5.
The seasonal footprinting mechanism (SFM) is thought to be a pre-cursor to the El Nino Southern Oscillation (ENSO). Fluctuations in the North Pacific Oscillation (NPO) impact the ocean via surface heat fluxes during winter, leaving a sea-surface temperature (SST) “footprint” in the subtropics. This footprint persists through the spring, impacting the tropical Pacific atmosphere–ocean circulation throughout the following year. The simulation of the SFM in the National Centers for Environmental Prediction (NCEP)/Climate Forecast System, version 2 (CFSv2) is likely to have an impact on operational predictions of ENSO and potentially seasonal predictions in the United States associated with ENSO teleconnection patterns. The ability of the CFSv2 to simulate the SFM and the relationship between the SFM and ENSO prediction skill in the NCEP/CFSv2 are investigated. Results indicate that the CFSv2 is able to simulate the basic characteristics of the SFM and its relationship with ENSO, including extratropical sea level pressure anomalies associated with the NPO in the winter, corresponding wind and SST anomalies that impact the tropics, and the development of ENSO-related SST anomalies the following winter. Although the model is able to predict the correct sign of ENSO associated with the SFM in a composite sense, probabilistic predictions of ENSO following a positive or negative NPO event are generally less reliable than when the NPO is not active.  相似文献   

6.
利用1979—2019年Hadley中心的海表温度资料、GPCP的降水资料以及NCEP-DOE的再分析资料等,分析了北半球春季热带南大西洋海表温度异常与北半球夏季亚澳季风区降水异常的联系。研究表明,北半球春季热带南大西洋海表温度异常与随后夏季热带西太平洋到南海(澳大利亚东侧海域到热带东印度洋)地区的降水异常为显著负相关(正相关)关系。北半球春季热带南大西洋的海表温度正异常可以引起热带大西洋和热带太平洋间的异常垂直环流,其中异常上升支(下沉支)位于热带大西洋(热带中太平洋)。热带中太平洋的异常下沉气流和低层辐散气流引起热带中西太平洋低层的异常东风,后者有利于热带中东太平洋海表温度出现负异常。通过Bjerknes正反馈机制,热带中东太平洋海表温度异常从北半球春季到夏季得到发展。热带中东太平洋海表温度负异常激发的Rossby波使得北半球夏季热带西太平洋低层出现一对异常反气旋。此时,850 hPa上热带西太平洋到海洋性大陆地区为显著的异常东风,有利于热带西太平洋到南海(澳大利亚东侧海域到热带东印度洋)地区出现异常的水汽辐散(辐合),导致该地区降水减少(增加)。  相似文献   

7.
Utilizing the NCEP/NCAR reanalysis monthly datasets,and based on the filter and standard deviation calculation,the interannual variability of sea surface temperature (SST) and 1000 hPa wind field for the tropical Pacific,Indian and Atlantic Oceans is investigated for the past 20 years (1979-1998).The characters of space-time evolution in SST anomalies (SSTA) for each ocean and corresponding wind anomaly field are acquired by using rotated principal component (RPC) and linear regression analysis methods.Using the method of correlation analysis.the characters of three tropical oceans correlated with ENSO are investigated.The contemporary correlation between the SSTA in the Indian Ocean and in the equatorial eastern Pacific is positive,and there is a weak negative correlation between the SSTA in the equatorial east Atlantic Ocean and in the equatorial eastern Pacific.The lead-lag correlation analysis indicates that the SSTA in the equatorial Indian Ocean lags the dominant Pacific ENSO mode by 3 months,and the SSTA in the equatorial Atlantic Ocean leads ENSO mode by 6 months.The ENSO-correlated components in tropical Indian Ocean and tropical Atlantic Ocean display much the same amount of total variance in each ocean,i.e..14% in the Indian Ocean and 12% in the Atlantic Ocean and the maximums are all above 40%.  相似文献   

8.
The NCEP Climate Forecast System version 2 (CFSv2) provides important source of information about the seasonal prediction of climate over the Indo-Pacific oceans. In this study, the authors provide a comprehensive assessment of the prediction of sea surface temperature (SST) in the tropical Indian Ocean (IO). They also investigate the impact of tropical IO SST on the summer anomalous anticyclonic circulation over the western North Pacific (WNPAC), focusing on the relative contributions of local SST and remote forcing of tropical IO SST to WNPAC variations. The CFSv2 captures the two most dominant modes of summer tropical IO SST: the IO basin warming (IOBW) mode and the IO dipole (IOD) mode, as well as their relationship with El Niño-Southern Oscillation (ENSO). However, it produces a cold SST bias in IO, which may be attributed to deeper-than-observed mixed layer and smaller-than-observed total downward heat flux in the tropical IO. It also overestimates the correlations of ENSO with IOBW and IOD, but underestimates the magnitude of IOD and summer IOBW. The CFSv2 captures the climate anomalies related to IOBW but not those related to IOD. It depicts the impact of summer IOBW on WNPAC via the equatorial Kelvin wave, which contributes to the maintenance of WNPAC in July and August. The WNPAC in June is mostly forced by local cold SST, which is better predicted by the CFSv2 compared to July and August. The mechanism for WNPAC maintenance may vary with lead time in the CFSv2.  相似文献   

9.
ENSO事件发展的时空特征   总被引:3,自引:0,他引:3       下载免费PDF全文
张秋庆  黄荣辉 《大气科学》1993,17(4):395-402
本文利用1951—1988年10°S—50°N太平洋SST资料与EOF分析方法对ENSO事件的发展过程与循环的时空特征进行了分析.分析结果表明EOF第一主分量时间系数的变化可以很好地表示SST距平变化与ENSO事件的发生.并且,第一主分量空间函数分布的变化揭示了一种ENSO事件增温是春季首先始于赤道东太平洋沿岸,随后向西传播到赤道中太平洋的增温过程;而第二主分量空间函数分布的变化揭示了另一种ENSO事件可增温首先始于赤道中太平洋,然后向东传播到赤道东太平洋的增温过程.分析结果还表明,ENSO事件的强度是强弱相间,其周期平均大约为4年左右. 本文还比较了80年代热带太平洋SST的变化及所发生的两次ENSO事件与其它年代所发生的ENSO事件的差别.  相似文献   

10.
The performance of Version 2 of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS-s2) in simulat ing global monsoon precipitation (GMP) was evaluated. Compared with FGOALS-sl, higher skill in simulating the annual modes of climatological tropical precipitation and interannual variations of GMP are seen in FGOALS-s2. The simulated domains of the northwestern Pacific monsoon (NWPM) and North American monsoon are smaller than in FGOALS-s 1. The main deficiency of FGOALS-s2 is that the NWPM has a weaker monsoon mode and stronger negatiw,' pattern in spring-fall asymmetric mode. The smaller NWPM domain in FGOALS-s2 is due to its simulated colder SST over the western Pacific warm pool. The relationship between ENSO and GMP is simulated reasonably by FGOALS-s2. However, the simulated precipitation anomaly over the South African monsoon region-South Indian Ocean during La Nina years is opposite to the observation. This results mainly from weaker warm SST anomaly over the maritime continent during La Nifia years, leading to stronger upper-troposphere (lower-troposphere) divergence (convergence) over the Indian Ocean, and artificial vertical as cent (descent) over the Southwest Indian Ocean (South African monsoon region), inducing local excessive (deficient) rainfall. Comparison between the historical and pre-industrial simulations indicated that global land monsoon precipitation changes from 1901 to the 1970s were caused by internal variation of climate system. External forcing may have contributed to the increasing trend of the Australian monsoon since the 1980s. Finally, it shows that global warming could enhance GMR especially over the northern hemispheric ocean monsoon and southern hemispheric land monsoon.  相似文献   

11.
ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM   总被引:1,自引:1,他引:0  
The teleconnections of the El Niño/Southern Oscillation (ENSO) in future climate projections are investigated using results of the coupled climate model ECHAM5/MPI-OM. For this, the IPCC SRES scenario A1B and a quadrupled CO2 simulation are considered. It is found that changes of the mean state in the tropical Pacific are likely to condition ENSO teleconnections in the Pacific North America (PNA) region and in the North Atlantic European (NAE) region. With increasing greenhouse gas emissions the changes of the mean states in the tropical and sub-tropical Pacific are El Niño-like in this particular model. Sea surface temperatures in the tropical Pacific are increased predominantly in its eastern part and redistribute the precipitation further eastward. The dynamical response of the atmosphere is such that the equatorial east–west (Walker) circulation and the eastern Pacific inverse Hadley circulation are decreased. Over the subtropical East Pacific and North Atlantic the 200 hPa westerly wind is substantially increased. Composite maps of different climate parameters for positive and negative ENSO events are used to reveal changes of the ENSO teleconnections. Mean sea level pressure and upper tropospheric zonal winds indicate an eastward shift of the well-known teleconnection patterns in the PNA region and an increasing North Atlantic oscillation (NAO) like response over the NAE region. Surface temperature and precipitation underline this effect, particularly over the North Pacific and the central North Atlantic. Moreover, in the NAE region the 200 hPa westerly wind is increasingly related to the stationary wave activity. Here the stationary waves appear NAO-like.  相似文献   

12.
In this study, we assess the prediction for May rainfall over southern China (SC) by using the NCEP CFSv2 outputs. Results show that the CFSv2 is able to depict the climatology of May rainfall and associated circulations. However, the model has a poor skill in predicting interannual variation due to its poor performance in capturing related anomalous circulations. In observation, the above-normal SC rainfall is associated with two anomalous anticyclones over the western tropical Pacific and northeastern China, respectively, with a low-pressure convergence in between. In the CFSv2, however, the anomalous circulations exhibit the patterns in response to the El Ni?o-Southern Oscillation (ENSO), demonstrating that the model overestimates the relationship between May SC rainfall and the ENSO. Because of the onset of the South China Sea monsoon, the atmospheric circulation in May over SC is more complex, so the prediction for May SC rainfall is more challenging. In this study, we establish a dynamic-statistical forecast model for May SC rainfall based on the relationship between the interannual variation of rainfall and large-scale ocean-atmosphere variables in the CFSv2. The sea surface temperature anomalies (SSTAs) in the northeastern Pacific and the central-eastern equatorial Pacific, and the 500-hPa geopotential height anomalies over western Siberia in previous April, which exert great influence on the SC rainfall in May, are chosen as predictors. Furthermore, multiple linear regression is employed between the predictors obtained from the CFSv2 and observed May SC rainfall. Both cross validation and independent test show that the hybrid model significantly improve the model''s skill in predicting the interannual variation of May SC rainfall by two months in advance.  相似文献   

13.
In this study, we investigate the variations of spring and autumn air temperatures in southern China (SC) and associated atmospheric circulation patterns. During the boreal spring, the SC air temperature is mainly influenced by tropical sea surface temperature anomalies (SSTAs). On the one hand, the El Ni?o SSTA pattern may induce a stronger-than-normal western Pacific subtropical high, which leads to warming in SC. On the other hand, the warm SSTAs in the tropical Indian Ocean may trigger anomalous Rossby wave trains, which propagate northeastward and result in anomalously high temperature in SC. During the boreal autumn, however, the SC temperature is more likely affected by mid-latitude atmospheric circulation, such as the wave trains forced by the North Atlantic SSTAs. The NCEP Climate Forecast System version 2 (CFSv2) is able to capture the climatology of SC air temperatures during both spring and autumn. For interannual variation, the CFSv2 shows a good skill for predicting the SC temperature in spring, due to the model’s good performance in capturing the associated atmospheric circulation anomalies as responses to tropical SSTAs, in spite of the overestimated relationship with the El Ni?o–Southern Oscillation (ENSO). However, the model has a poor skill for predicting the SC temperature in autumn, primarily due to the unrealistic prediction of its relationship with the ENSO.  相似文献   

14.
通过对ENSO循环的两个不同位相中印度洋地区海表温度变化特征的分析,指出印度洋地区的海温变化与赤道东太平洋地区的海温变化有较好 的相关关系,是ENSO循环的重要组成部分,对应于赤道东太平洋暖位相期,印度洋地区的海温分布为东冷西暖,与此相反,在赤道东太平洋冷位相,印度洋地区的温分布为东暖西冷,进一步的分析还发现,印度洋东,西部地区海温变化纬向差异最明显的区域位于印度洋赤道以南0-25℃附近,且这种差异具有明显的年季变化特征,在整个夏季风期间差异较大,而冬季风期间较小,其中冷位相期间的纬向差异比暖位相期间的纬向差异大,代表印度洋纬向差异的IDM(偶极指数)变化与赤道东太平洋地区的海温变化有很好的正相关关系。  相似文献   

15.
This paper discusses the interdecadal changes of the climate in the tropical Pacific with a focus on the corresponding changes in the characteristics of the El Niño–Southern Oscillation (ENSO). Compared with 1979–1999, the whole tropical Pacific climate system, including both the ocean and atmosphere, shifted to a lower variability regime after 1999/2000. Meanwhile, the frequency of ENSO became less regular and was closer to a white noise process. The lead time of the equatorial Pacific's subsurface ocean heat content in preceding ENSO decreased remarkably, in addition to a reduction in the maximum correlation between them. The weakening of the correlation and the shortening of the lead time pose more challenges for ENSO prediction, and is the likely reason behind the decrease in skill with respect to ENSO prediction after 2000. Coincident with the changes in tropical Pacific climate variability, the mean states of the atmospheric and oceanic components also experienced physically coherent changes. The warm anomaly of SST in the western Pacific and cold anomaly in the eastern Pacific resulted in an increased zonal SST gradient, linked to an enhancement in surface wind stress and strengthening of the Walker circulation, as well as an increase in the slope of the thermocline. These changes were consistent with an increase (a decrease) in precipitation and an enhancement (a suppression) of the deep convection in the western (eastern) equatorial Pacific. Possible connections between the mean state and ENSO variability and frequency changes in the tropical Pacific are also discussed.  相似文献   

16.
郝立生  丁一汇  闵锦忠 《高原气象》2012,31(4):1007-1018
利用美国国家环境预报中心和国家大气研究中心(NCEP/NCAR)再分析环流资料、美国国家海洋和大气管理局(NOAA)重构的海温资料和中国国家气象信息中心(NMIC)整理的752个测站降水资料,对东亚地区季风环流季节演变主要模态及其与中国东部降水异常的关系进行了分析。结果表明,东亚地区850hPa季风环流季节演变存在两个主要模态,第一模态主要受热带印度洋海温和赤道东太平洋海温偏低背景下印度洋偶极(IOD)演变过程控制;第二模态主要受赤道东太平洋ENSO循环和IOD演变控制。对应第一模态,夏季华北多雨,长江流域少雨;对应第二模态,夏季华北、长江流域多雨,淮河、华南少雨。近50年两模态发生了明显改变,与降水变化有很好的对应关系。  相似文献   

17.
Analyzing the anomalous field of SST over the tropical Pacific for two kinds of ENSO events after 1956. we find that in the preceding year before the eastern pattern of El Nino event there is the La Nina event and large negative anomalies of SST in the tropical central and eastern Pacific; the preceding year before the eastern pattern of La Nina event witnesses the prevalence of the El Nino event and large positive anomalies of SST in the same waters: the preceding year before the central patterns of the El Nino (La Nina) events are generally marked by significant positive (negative) SST anomalies in central/western (eastern) tropical Pacific. The fields are just the opposite for two patterns of ENSO events. For waters in the warm pool in the western tropical Pacific, the central (eastern) pattern of El Nino event is with a warm (cool) preceding year of the pool. The warmer conditions in the western Pacific warm pool are a necessity for the occurrence of the central pattern of El Nino event.  相似文献   

18.
Using the Paleoclimate Modeling Inter-comparison Project Phase 2 and 3 (PMIP2 and PMIP3), we investigated the tropical Pacific climate state, annual cycle, and El Niño-Southern Oscillation (ENSO) during the mid-Holocene period (6,000 years before present; 6 ka run). When the 6 ka run was compared to the control run (0 ka run), the reduced sea surface temperature (SST) and the reduced precipitation due to the basin-wide cooling, and the intensified cross-equatorial surface winds due to the hemispheric discrepancy of the surface cooling over the tropical Pacific were commonly observed in both the PMIP2 and PMIP3, but changes were more dominant in the PMIP3. The annual cycle of SST was weaker over the equatorial eastern Pacific, because of the orbital forcing change and the deepening mixed layer, while it was stronger over the equatorial western pacific in both the PMIP2 and PMIP3. The stronger annual cycle of the equatorial western Pacific SST was accompanied by the intensified annual cycle of the zonal surface wind, which dominated in the PMIP3 in particular. The ENSO activity in the 6 ka run was significantly suppressed in the PMIP2, but marginally reduced in the PMIP3. In general, the weakened air-sea coupling associated with basin-wide cooling, reduced precipitation, and a hemispheric contrast in the climate state led to the suppression of ENSO activity, and the weakening of the annual cycle over the tropical eastern Pacific might lead to the intensification of ENSO through the frequency entrainment. Therefore, the two opposite effects are slightly compensated for by each other, which results in a small reduction in the ENSO activity during the 6 ka in the PMIP3. On the whole, in PMIP2/PMIP3, the variability of canonical (or conventional) El Niño tends to be reduced during 6 ka, while that of CP/Modoki El Niño tends to be intensified.  相似文献   

19.
The predictable patterns of the Asian and Indo-Pacific summer precipitation in the NCEP climate forecast system (CFS) are depicted by applying a maximized signal-to-noise empirical orthogonal function analysis. The CFS captures the two most dominant modes of observed climate patterns. The first most dominant mode is characterized by the climate features of the onset years of El Niño-Southern Oscillation (ENSO), with strong precipitation signals over the tropical eastern Indian and western Pacific oceans, Southeast Asia, and tropical Asian monsoon regions including the Bay of Bengal and the South China Sea. The second most dominant mode is characterized by the climate features of the decay years of ENSO, with weakening signals over the western-central Pacific and strengthening signals over the Indian Ocean. The CFS is capable of predicting the most dominant modes several months in advance. It is also highly skillful in capturing the air–sea interaction processes associated with the precipitation features, as demonstrated in sea surface temperature and wind patterns.  相似文献   

20.
利用一个全球海气耦合模式(BCM),结合观测资料,讨论了热带太平洋强迫对北大西洋年际气候变率的影响。研究表明,BCM能够相对合理地模拟赤道太平洋的年际变率模态及相应的海温距平型和大气遥相关型,尽管其准3年的振荡周期过于规则。来自数值模式和观测上的证据都表明,北大西洋冬季海温的主导性变率模态,即自北而南出现的“- -”的海温距平型,受到来自热带太平洋强迫的显著影响,其正位相与赤道中东太平洋冷事件相对应。换言之,赤道太平洋暖事件的发生,在太平洋-北美沿岸激发出PNA遥相关型,进而通过在北大西洋产生类似NAO负位相的气压距平型,削弱本来与NAO正位相直接联系的三核型海温距平。北大西洋三核型海温距平对热带太平洋强迫的响应,要滞后2—3个月的时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号