首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In this study we explore the feasibility of using of islands‐in‐the‐sea (I/S) fibers in the spunbond process to produce relatively high strength micro‐ and nanofiber webs. The relationships between the number of islands, percent polymer composition, and the fiber and fabric properties are reported. Nylon 6 (N6) and poly (lactic) acid (PLA) were used as the islands and sea polymers, respectively. Micro‐ and nanofibers were obtained by dissolving PLA polymer from the final spunbond nonwovens. The fibers with 25% N6 showed a decrease in fiber diameter from 1.3 to 0.36 μm (micron) when the number of islands was increased from 36 to 360. The diameter of fibers with 75% N6 showed a decline from 2.3 to 0.5 μm for the same range. Hydroentangling was found to be the preferred method of bonding of the I/S structures; the bonded structures were able to withstand postprocessing steps required for dissolving of the sea from the resulting nonwovens. Hydroentanged micro‐ and nanofiber based nonwovens demonstrated high tensile and tear properties, which were insensitive to the N6 fiber size and its mechanical properties. Bonding efficiency and web uniformity were found to be dominant factors influencing the fabric performance. Overall, our study demonstrated that the I/S configuration is a promising technique for high speed and high throughput production of strong and light weight nonwovens comprised of micro‐ and nanofibers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
This paper studies the effect of low-temperature plasma treatment on an ink-jet printed cotton fabric. Due to the specific printing and conductivity requirements for ink-jet printing, not all conventional printing chemicals, such as sodium alginate and urea, used for cotton fabric can be directly incorporated into the ink formulation. As a result, the cotton fabric requires pretreatment with the printing chemicals prior to the stage of ink-jet printing. Cotton is pretreated with the printing chemicals by means of a coating method. The aim of this paper was to study the possibility and effectiveness of applying low-temperature plasma treatment to enhance the performance of pretreatment paste containing sodium alginate so as to improve the properties of the ink-jet printed cotton fabric. Experimental results revealed that a low-temperature plasma pretreatment coupled with the ink-jet printing technique could improve the final printed properties of cotton fabric.  相似文献   

3.
The wetting properties of thermally bonded polyester nonwoven fabrics with different basis weights were studied. These nonwovens had the same composition: 85% poly(ethylene terephthalate) and 15% poly(butylene terephthalate) fibers. Two techniques, the 3S wicking test and sessile drop method, yielded similar water contact angles for all the nonwovens, but these results differed from the values obtained with the single fibers. In the nonwoven fabrics, the pore structure played a dominant role in the wetting properties: the existence of large pores in the thinner nonwovens reduced the dimensions of the liquid–solid interfacial perimeter. Compared with the water contact angle of the constituent single fibers, the contact angle of the fabrics was increased. A crenellated surface model was created to quantify the influence of pores on the wettability of nonwovens. It was possible to deduce the surface porosity of the fabric with this model, but only in the case of contact with nonwetting liquids such as water: this surface porosity corresponded only to the outermost layers of the fabric structure. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 387–394, 2006  相似文献   

4.
In this study, flame retardancy properties of fabrics treated with phosphorous (P) doped and undoped SiO2 thin films were developed by sol–gel technique. As to this aim, P‐doped and undoped SiO2 film were coated on cotton fabric from the solutions prepared from P, Si‐based precursors, solvent, and chelating agent at low temperature in air using sol–gel technique. To determine solution characteristics, which affect thin film structure, turbidity, pH values, and rheological properties of the prepared solutions were measured using a turbidimeter, a pH meter, and a rheometer machines before coating process. The thermal, structural, and microstructural characterization of the coating were done using differential thermal analysis/thermograviometry, fourier transform infrared spectroscopy, X‐ray diffractometry, and scanning electron microscopy. In addition, tensile strength, wash fastness, flame retandancy, and lightness properties of the coated fabrics were determined. To compensate the slight loss of tensile strength of samples, which occurred at the treated fabrics with P‐doped Si‐based solutions, the cotton fabrics were coated with polyurethane films during second step. In conclusion, the flame retardant cotton fabric with durability of washing as halogen‐free without requiring after treatment with formaldehyde was fabricated using sol–gel processing for the first time. Moreover the cotton fabrics, which were treated with P‐doped Si‐based solutions and then coated with polyurethane at second step, still has got nonflammable property. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

5.
Synthesized shape‐memory polyurethane (PU) block copolymers were used to prepare electrospun nonwovens via electrospinning. PU solutions were prepared with a mixed solvent of N,N‐dimethylformamide and tetrahydrofuran. The electrospun PU nonwovens were prepared with hard‐segment concentrations of 40 and 50 wt %. The morphology of the electrospun fibers was investigated with scanning electron microscopy. The average diameter of low‐viscosity (ca. 130–180 cPs) electrospun fibers was about 800 nm, and the morphology of the electrospun nonwovens was beaded‐on fibers. In contrast, the average diameter of high‐viscosity (ca. 530–570 cPs) electrospun fibers was about 1300 nm. In an investigation of the mechanical properties of the electrospun PU nonwovens, it was found that the tensile strength increased as the hard‐segment concentration increased within a similar range of viscosities. Also, the tensile strength of the electrospun PU nonwovens in the machine direction was higher than that in the transverse direction because of a difference in the velocities of the drum collectors. The electrospun PU nonwovens with hard‐segment concentrations of 40 and 50 wt % were found to have a shape recovery of more than 80%. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 460–465, 2005  相似文献   

6.
The feasibility of using chitosan as a thickener in the pretreatment print paste for textile ink‐jet printing was explored. An orthogonal analysis was used to determine the optimum conditions for using chitosan as a thickener in the pretreatment print paste and the effects of different process factors for achieving the best color yield in textile ink‐jet printing. With the help of the orthogonal analysis, the importance of different process factors was found to be in the order of (1) the amount of urea used, (2) the amount of chitosan used, (3) the amount of sodium bicarbonate used, and (4) the steaming time. On the basis of the results of the orthogonal analysis, the optimum conditions for using chitosan as a thickener for the pretreatment print paste were concluded to be 40 mL of chitosan, 10 g of urea, 8 g of sodium bicarbonate, and 5 min of steaming. According to an analysis of the results of different color fastness tests, chitosan could principally work as a pretreatment print paste thickener. However, the final color yield obtained from chitosan‐containing cotton fabrics depended greatly on the stage of the chitosan application. Nevertheless, the color fastness properties and the outline sharpness of the prints of cotton fabric were greatly improved by the chitosan treatment. A two‐bath chitosan treatment was developed to separate the chitosan from sodium bicarbonate and urea before it was padded onto the fabric surface to minimize the neutralization effect. On the basis of the results for the highest color yield obtained on the cotton fabric, it was confirmed that the two‐bath chitosan treatment was successfully developed. In addition, chitosan could impart higher antibacterial properties with a slight reduction in the tensile strength of the cotton fabric. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
为提高亚麻织物的喷墨印花颜色效果,将十二烷基硫酸钠(SDS)与海藻酸钠(SA)协同作用于亚麻织物的预处理工艺,对处理后织物表面墨滴的铺展面积、喷墨印花色块的颜色参数进行了测试,使用接触角测量仪、扫描电子显微镜(SEM)、固体表面zeta电位仪、X射线光电子能谱仪(XPS)和傅里叶变换红外光谱仪(FTIR)对预处理前后亚麻织物表面物理和化学性能进行了表征。结果表明:与SA预处理织物相比,表面活性剂的引入可使亚麻织物表面墨滴铺展面积减小14%,墨滴渗化程度也明显减小;青色和黑色印花色块的表观颜色深度增加,摩擦色牢度略有降低,断裂强力和耐日晒色牢度无明显改变。同时从SEM图看出,经预处理后,SDS+SA预处理剂在亚麻织物表面上形成了薄膜,纤维间以锯齿状的膜结构堵塞了孔隙,促使更多的活性染料在滴落的位置与纤维发生共价结合;此外,预处理处理后织物的亲水性增加,有利于染料对亚麻纤维的上染。  相似文献   

8.
In dry-formed polymer-bonded networks of cellulose fibers and in other types of nonwovens, the fiber-polymer joint is considered to be the primary factor determining the ultimate properties of the network structure. In an attempt to develop a model describing the joint failure, the well-known fiber pullout test has been applied to a system consisting of regenerated cellulose fibers and three different polymer matrices: a styrene–acrylate copolymer, poly(vinyl alcohol), and high density polyethylene. For each system, the interfacial bond strength was evaluated. The results are, to some extent, discussed in relation to the mechanical behavior of dry-formed networks bonded with similar polymeric materials. It is suggested that both the interfacial properties and the cohesive strength of the polymer binder are of importance for the mechanical strength of the bonded network.  相似文献   

9.
In this study, silver nanoparticles were synthesized on cotton fabric modified with 3‐aminopropyltrimethoxysilane (APTMS) using sodium citrate as a reducing/stabilizing agent by microwave‐assisted process. The presence of a highly oriented amino‐terminated self‐assembled monolayer and formation of APTMS was demonstrated by an X‐ray photoelectron spectroscopy (XPS) analysis. The silver‐coated cotton fabrics were examined by scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX). UV protection, antistatic, and hydrophobic properties were also evaluated. The results show that silver‐coated fabric modified with APTMS possesses excellent antistatic, UV protection with ultraviolet protection factor (UPF) of 396.5 and superhydrophobic properties with contact angle of 153.2°. APTMS pretreatment improves the adhesive strength between silver coatings and cotton fabric. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3862–3868, 2013  相似文献   

10.
Durable ultraviolet (UV)-protective cotton fabric has great application potential in outdoor cotton clothing. In this study, oppositely charged TiO2 nanoparticles were deposited onto cotton fabric through the layer-by-layer self-assembly technique, resulting in multilayer films with UV-protective properties. The mechanism of the technology has been investigated through characterization of the structure and properties using different techniques including FTIR, UV–Vis spectroscopy, and a scanning electron microscope with an energy-dispersive X-ray spectrum. The results showed that TiO2 nanoparticles distributed uniformly on the surface of cotton fibers. The TGA results indicated that the TiO2 nanoparticles deposit on cotton fabrics had little effect on the thermal stability of cotton fabrics. The tensile strength and air permeability of the cotton samples were tested by a universal material testing machine and automatic ventilation instrument. The UV protection property of cotton fabric after assembled multilayer films was measured by an ultraviolet transmittance analyzer, and the laundering experiments were carried out to determine the durability of TiO2 nanoparticles on cotton fabric. The results showed that the UV protection property of cotton fabrics after assembled TiO2 nanoparticles was still maintained at a high level after five launderings.  相似文献   

11.
In this study, in order to improve mechanical properties of cotton fabrics, nano-micro sized calcium carbonate (CaCO3) was deposited in situ on cotton fabrics. The mechanical properties, surface morphology, crystalline index, infrared spectrum, thermal property, and wettability of the deposited fabrics were measured and discussed. The results showed that the breaking strength of cotton fabric increased by about 10% after in situ deposition of nano-micro calcium carbonate. After ultrasonic washing, the strength of cotton fabric deposited CaCO3 was still increased by about 10%. The crystallinity of the cotton fabric deposited with calcium carbonate increased from 76% to 84%. The hydrogen bond between cellulose molecules and calcium carbonate was confirmed by infrared spectroscopy. The hydrophilicity and thermal properties of cotton fabric were not significantly influenced by calcium carbonate deposition. This provides a new idea for improving the mechanical properties of cotton fabric.  相似文献   

12.
Radiation-initiated polymerization of vinyl phosphonate oligomer (molecular weight 500–1000) and N-methylolacrylamide from aqueous solutions was investigated with cotton printcloth, flanelette, and sateen fabrics and with cotton (50%)–polyester (50%) flannelette fabrics. Determinations were made of the effects of radiation dosage, mole ratio of vinyl phosphonate in the oligomer to N-methylolacrylamide in aqueous solution, concentration of reactants, wet pickup of solutions on fabrics, and irradiation of both dry and wet fabrics on efficiency of conversion of oligomer and monomer in solution to polymer add-on. The effects of vinyl phosphonate oligomer and N-methylolacrylamide radiation-initiated polymerization on some of the textile properties of cotton printcloth and on flame resistances of cotton and cotton–polyester fabrics were evaluated. The breaking strength of modified cotton printcloth was about the same as that of unmodified fabric; however, the tearing strength and flex abrasion resistance of modified fabric were reduced. The textile hand of the modified printcloth fabrics that had flame resistance indicated: interaction between cellulose and vinyl phosphonate oligomer–poly(N-methylolacrylamide) and uniform deposition in the fibrous cross section (transmission electron microscopy); surface areas of heavy deposits of oligomer–polymer (scanning electron microscopy); and phosphorus located throughout the fibrous cross section (energy dispersive x-ray analysis). Polymerization of vinyl phosphonate oligomer and N-methylolacrylamide was radiation initiated with cotton–polyester fabric; however, this modified fabric did not have flame-resistant properties.  相似文献   

13.
李宏英  王鸿博  傅佳佳  王文聪 《化工进展》2019,38(10):4651-4658
由于聚酯纤维的化学性质稳定、纤维表面光滑,不易与后整理剂相结合,因此利用薄荷油微胶囊后整理对聚酯织物进行舒适凉爽改性时,存在附着量少、改性效果差的缺点。为解决这一问题,本文在后整理前增加了碱预处理和等离子体预处理。通过对聚酯织物原样、无预处理后整织物、碱预处理后整织物和等离子体预处理后整织物进行舒适凉爽性能测试,深入分析两种预处理方法对聚酯织物改性效果的影响。结果表明:等离子体预处理在织物透湿、导水、润湿、速干和凉爽性改性方面促进作用更明显,相比无预处理后整织物,等离子体后整织物的透湿率、经向和纬向芯吸高度、滴水扩散时间、蒸发速率及接触凉感系数分别提高了3.32%、40.24%、27.25%、80.39%、21.21%和5.59%;碱预处理则在织物透气性和吸水性改善方面的效果更佳,相比无预处理的后整织物,可将织物的透气率和吸水率分别提高43.43%和13.03%。因此,两种预处理方法对聚酯织物舒适凉爽性的改性效果有显著促进作用。  相似文献   

14.
β‐cyclodextrin (CD)‐based linear water‐soluble polymers were synthesized in a controlled manner by a one‐pot synthesis method. The synthesized water‐soluble polymer was covalently fixed onto cotton surfaces by a polycondensation reaction at controlled conditions. Grafting on cotton fibers transfers the cyclodextrin properties onto its surface. The grafting occurred through the formation of a crosslink between hydroxyl groups of cotton and CD polymer. This was confirmed using FTIR spectroscopy, DSC, tensile strength, computer color matching, and solvent fastness analysis. The tensile strength of modified fiber samples was unchanged as compared to that of unmodified fiber samples. The percentage of grafting depended on a number of parameters and specifically on (i) temperature, (ii) time, and (iii) pH of the reaction medium. Similarly, under optimum conditions the weight increase on cotton fabric due to the grafting reaction could reach 10–15 wt % The grafted cotton fabric shows good dyeability and solvent fastness properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
叶轶 《玻璃纤维》2016,(4):5-11
非织造布是用化学、机械、加热或溶剂处理方式把纤维交缠形成的织物状材料。国际上的玻璃纤维非织造布在玻璃纤维产品中占有较大比例,应用范围颇广。文中讲述了玻璃纤维非织造布的主要类型及它们的应用范围和市场动态,借此展示玻璃纤维的宽泛用途和强大生命力。  相似文献   

16.
In this study, poly(ethylene terephthalate) (PET) fabrics were modified with two types of commercial lipases, namely, Lipex and Lipolase, and grafted with acrylic acid (AA) to improve their absorption properties. The effects of the enzyme concentration, reaction temperature, time, and pH on the grafting of AA onto PET were investigated. The pretreatment of PET with lipases increased the amount of AA that was introduced to the PET fibers, whereas AA grafting onto the untreated PET fabrics led to lower graft yields. Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the AA‐grafted pretreated polyester fabrics. A new band appearing at 1546 cm?1 in the Fourier transform infrared spectrum implied that AA was introduced onto the PET fabrics. The surfaces of the fabric fibers presented in scanning electron microscopy micrographs clearly indicated the formation of a layer of grafted poly (acrylic acid). The results show that the density of surface grafting was improved by the lipase pretreatment. The increase in grafting was higher for Lipex than for Lipolase. The highest graft yield was obtained with 1% Lipex and Lipolase for 30 min at pH values of 7 and 5, respectively. There were no significant changes in the tenacity or weight reduction of the fabrics. The moisture content of the samples increased linearly with increasing graft yield. This was higher for the pretreated fabrics grafted with Lipex. A higher color strength was obtained for grafted PET samples that were pretreated with Lipex when they were dyed in alkaline aqueous solutions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
In this study the effect of low temperature plasma (LTP) treatment of cotton fabric for ink-jet printing was investigated. Owing to the specific printing and conductivity requirements for ink-jet printing, none of the conventional printing chemicals used for cotton fabric can be directly incorporated into the ink formulation. As a result, the cotton fabric requires treatment with the printing chemicals prior to the stage of ink-jet printing. The printing chemicals as a treatment to cotton fabric are applied by the coating method. The aim of this study was to investigate the possibility and effectiveness of applying LTP pre-treatment to enhance the performance of treatment paste containing sodium alginate, to improve the properties of the ink-jet printed cotton fabric. Experimental results revealed that the LTP pre-treatment in conjunction with the ink-jet printing technique could improve the final properties of printed cotton fabric.  相似文献   

18.
Cotton‐based nonwovens are generally produced by carding and then bonding. One of the most important characteristics of nonwoven materials is the uniformity of their structure and properties. However, the carded webs always have irregularities caused by processing and material variables. The binder fiber distribution in carded cotton‐based nonwoven fabrics was analyzed based on the crystallization behavior of one of the components of the binder fibers by DSC. The effects of process parameters, such as bonding temperature and binder fiber component, on the uniformity were discussed in detail in this article. Also, the relationship of binder fiber distribution and the strip tensile property and single‐bond tensile strength were investigated. The results showed that if the binder fibers were not well distributed in the fabric, it would be hard to get the same trend of temperature effect on tensile property for the strip and single‐bond tests. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3148–3155, 2004  相似文献   

19.
The mechanical properties of extracted and formaldehyde-crosslinked cotton fibers are presented. The crease recovery angles of different cotton fibers are more or less the same. As the per cent bound formaldehyde increases, the crease recovery angle of the treated fibers increases while the tensile strength decreases. Crease recovery and tensile loss factors appear to be sensitive indices of the improvement in crease recovery angles and the concomitant losses in tenacity of the fibers modified by any crosslinking process. The crease recovery angles for any cotton modified by formaldehyde crosslinking depend on the pretreatment it has received.  相似文献   

20.
Recent research on all aspects of thermally point‐bonded nonwovens has led to considerable improvements in the understanding of material requirements for these nonwovens, the changes that occur during bonding, and the mechanical properties of the resultant nonwoven materials. This article will review (1) how the thermal bonding process transforms the material properties of feed fibers, (2) the implications for material selection, and (3) the resultant failure properties of the bonded nonwoven. The formation of a bond during thermal bonding follows in sequence through three critical steps: (1) heating the web to partially melt the crystalline region, (2) reptation of the newly released chain segments across the fiber–fiber interface, and (3) subsequent cooling of the web to re‐solidify it and to trap the chain segments that diffused across the fiber–fiber interface. The time scales for these processes closely match commercial practice. In addition, adequate pressure is required to compress the fibers that form the bond spots and enhance heat transfer to these fibers. However, pressures typically used in commercial practice are insufficient to increase the melting temperature significantly or to produce significant heating due to compression of the fibers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号