首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
A purified alkaline thermo‐tolerant lipase from Pseudomonas aeruginosa MTCC‐4713 was immobilized on a series of five noble weakly hydrophilic poly(AAc‐co‐HPMA‐cl MBAm) hydrogels. The hydrogel synthesized by copolymerizing acrylic acid and 2‐hydroxy propyl methacrylate in a ratio of 5 : 1 (HG5:1 matrix) showed maximum binding efficiency for lipase (95.3%, specific activity 1.96 IU mg?1 of protein). The HG5:1 immobilized lipase was evaluated for its hydrolytic potential towards p‐NPP by studying the effect of various physical parameters and salt‐ions. The immobilized lipase was highly stable and retained ~92% of its original hydrolytic activity after fifth cycle of reuse for hydrolysis of p‐nitrophenyl palmitate at pH 7.5 and temperature 55°C. However, when the effect of pH and temperature was studied on free and bound lipase, the HG5:1 immobilized lipase exhibited a shift in optima for pH and temperature from pH 7.5 and 55°C to 8.5 and 65°C in free and immobilized lipase, respectively. At 1 mM concentration, Fe3+, Hg2+, NH4+, and Al3+ ions promoted and Co2+ ions inhibited the hydrolytic activities of free as well as immobilized lipase. However, exposure of either free or immobilized lipase to any of these ions at 5 mM concentration strongly increased the hydrolysis of p‐NPP (by ~3–4 times) in comparison to the biocatalysts not exposed to any of the salt ions. The study concluded that HG5:1 matrix efficiently immobilized lipase of P. aeruginosa MTCC‐4713, improved the stability of the immobilized biocatalyst towards a higher pH and temperature than the free enzyme and interacted with Fe3+, Hg2+, NH4+, and Al3+ ions to promote rapid hydrolysis of the substrate (p‐NPP). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4252–4259, 2006  相似文献   

2.
In order to enhance the reusability, Rhizomucor miehei lipase was entrapped in a single step within silica particles having an oleic acid core (RML@SiO2). Characterization of RML@SiO2 by scanning and transmission electron microscopy and Fourier transform infrared studies supported the lipase immobilization within silica particles. The immobilized enzyme was employed for transesterification of cottonseed oil with methanol and ethanol. Under the optimum reaction conditions of a methanol‐to‐oil molar ratio of 12:1 or ethanol‐to‐oil molar ratio of 15:1, stirring speed of 250 revolutions/min (flask radius = 3 cm), reaction temperature of 40 °C, and biocatalyst concentration of 5 wt% (with respect to oil), more than 98 % alkyl ester yield was achieved in 16 and 24 h of reaction duration in case of methanolysis and ethanolysis, respectively. The immobilized enzyme did not require any buffer solution or organic solvent for optimum activity; hence, the produced biodiesel and glycerol were free from metal ion or organic molecule contamination. The activation energies for the immobilized enzyme‐catalyzed ethanolysis and methanolysis were found to be 34.9 ± 1.6 and 19.7 ± 1.8 kJ mol?1, respectively. The immobilized enzyme was recovered from the reaction mixture and reused in 12 successive runs without significant loss of activity. Additionally, RML@SiO2 demonstrated better reusability as well as stability in comparison to the native enzyme as the former did not lose the activity even upon storage at room temperature (25–30 °C) over an 8‐month period.  相似文献   

3.
BACKGROUND: Reactions performed under solvent‐free conditions give processes that are environmentally friendly, since most solvents are polluting agents. In this work, the performance of Candida rugosa lipae (CRL) immobilized on styrene‐divinylbenzene (STY‐DVB) or controlled pore silica (CPS), and the commercial lipase Novozym 435, was evaluated for the synthesis of butyl esters in solvent–free systems (SFS). A 22 full factorial design was used to study the influence of the organic acid chain length and the biocatalyst concentration on the esterification performance. RESULTS: When CRL on STY‐DVB was used, the ester formation was influenced by both variables and their interaction. The reaction conversion was higher (63%) using 10% of immobilized system and lauric acid, corresponding to a productivity of 3.62 g L?1 h?1 For CRL on CPS, only the effect of biocatalyst concentration was significant, and the highest yield was attained using 20% of immobilized system and caprilic acid. In the case of Novozym 435, the highest yield (49%) was obtained using butyric acid as acyl donor at 15% of immobilized lipase. CONCLUSION: The results allowed better understanding of the influence of important parameters in this environmentally friendly process, which also has the process advantage of a higher volumetric productivity when compared with a solvent system. Copyright © 2007 Society of Chemical Industry  相似文献   

4.
This work aims at evaluating the potential of Carica papaya lipase (CPL) self‐immobilized in papaya latex as a biocatalyst for the synthesis of human milk fat substitutes (HMFS), to be used as a low‐cost alternative to commercial lipases. Two different CPL preparations, one extracted from the papaya fruit (CPL I) and the other from petiole leaves (CPL II) of papaya tree, were tested as catalysts for the acidolysis between tripalmitin and (i) oleic acid or (ii) omega‐3 PUFA, batchwise, at 60°C, in solvent‐free media. After 24 h, molar incorporation was higher for oleic acid (22.1 mol%) when CPL I was used. This biocatalyst was selected for further studies. RSM was used to model reaction conditions: medium formulation (molar ratio oleic acid/tripalmitin, MR, 1.2:1–6.8:1) and temperature (58–72°C). Acyl migration decreased with MR increase. In batch operational stability assays at 60°C, using MR of 2:1 and 6:1, the highest stability was observed for a MR of 2:1. Practical applications: The use of this biocatalyst is a feasible way to valorize papaya agro‐residues which represent an important environmental problem in the producing countries. The obtained results were rather promising since, with this almost zero‐cost biocatalyst, it was possible to produce a high added‐value product (HMFS). Under optimized conditions, the obtained results were comparable with those obtained with expensive immobilized commercial lipases.  相似文献   

5.
An alkaline thermotolerant bacterial lipase of Bacillus coagulans MTCC‐6375 was purified and immobilized on a methacrylic acid and dodecyl methacrylate (MAc‐DMA) hydrogel. The lipase was optimally bound to the matrix after 20 min of incubation at 55°C and pH 9 under shaking conditions. The matrix‐bound lipase retained approximately 50% of its initial activity at 70–80°C after 3 h of incubation. The immobilized lipase was highly active on medium chain length p‐nitrophenyl acyl ester (C: 8, p‐nitrophenyl caprylate) than other p‐nitrophenyl acyl esters. The presence of Fe3+, NH4+, K+, and Zn2+ ions at 1 mM concentration in the reaction mixture resulted in a profound increase in the activity of immobilized lipase. Most of the detergents partially reduced the activity of the immobilized lipase. The immobilized lipase performed ~62% conversion in 12 h at temperature 55°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1420–1426, 2006  相似文献   

6.
Ethanol‐soluble (ES) lecithin mainly contains phosphatidylcholine (PC). The incorporation of caprylic acid into PC using immobilized phospholipase A2 (PLA2) and lipase was investigated. The Rhizomucor meihei lipase and the porcine pancreatic PLA2 were immobilized on the hydrophobic resin Diaion HP‐20 and the modification was carried out in hexane as solvent. HPTLC with densitometer technique was successfully used for monitoring the production of structured phospholipids (PL) (ML‐type PC, MM‐type PC, and lysophosphatidylcholine; L: long‐chain fatty acid, M: medium‐chain fatty acid). The various parameters such as the effects of reaction temperature, enzyme loading, and the effect of molar proportion of substrate were studied in order to determine the optimum reaction conditions for the acidolysis reaction. The optimal operating conditions for the PLA2‐catalyzed reaction were obtained as 50°C temperature, 50% (wt/wt of substrate) enzyme loading, and a 1:12 molar proportion of PC/caprylic acid. For the lipase‐catalyzed reaction, the optimized temperature was the same as for PLA2, but the enzyme loading and molar proportion were slightly lower, i.e., 40 % w/w of substrate and 1:9 PC/caprylic acid, respectively. The effects of these parameters on the production of structured PL were compared. Under these optimal conditions, the ML‐type PC content was higher in the PLA2‐catalyzed reaction, i.e., 45.29 mol%, and in the lipase‐catalyzed reaction it was 38.74 mol%.  相似文献   

7.
The lipase/acyltransferase from Candida parapsilosis is an original biocatalyst that preferentially catalyses alcoholysis over hydrolysis in biphasic aqueous/organic media. In this study, the performance of the immobilised biocatalyst in the interesterification in solvent‐free media of fat blends rich in n‐3 polyunsaturated fatty acids (n‐3 PUFA) was investigated. The interesterification activity of this biocatalyst at a water activity (aw) of 0.97 was similar to that of commercial immobilised lipases at aw values lower than 0.5. Thus, the biocatalyst was further used at an aw of 0.97. Response surface modelling of interesterification was carried out as a function of medium formulation, reaction temperature (55–75 °C) and time (30–120 min). Reaction media were blends of palm stearin (PS), palm kernel oil and triacylglycerols (TAG) rich in n‐3 PUFA (“EPAX 4510TG”; EPAX AS, Norway). The best results in terms of decrease in solid fat content were observed for longer reaction time (>80 min), lower temperature (55–65 °C), higher “EPAX 4510TG” content and lower PS concentration. Reactions at higher temperature led to final interesterified fat blends with lower free fatty acid contents. TAG with high equivalent carbon number (ECN) were consumed while acylglycerols of lower ECN were produced.  相似文献   

8.
Candida cylindracea lipase was entrapped in organic-inorganic hybrid sol-gel polymers made from tetramethoxysilane (TMOS) and alkyltrimethoxysilanes. By forming the gels within the pores of a nonwoven polyester fabric, a novel immobilized biocatalyst in sheet configuration based on sol-gel en-trapment of the enzyme was obtained. Lipases immobilized in sol-gel matrices efficiently catalyzed the direct esterification reaction of geraniol and acetic acid in anhydrous hexane to produce geranyl acetate. The optimal formulation of the sol-gel solution for enzyme immobilization was at a 20∶1 molar ratio of water to total silane; a 4∶1 molar ratio of propyltrimethoxysilane to TMOS; hydrolysis time at 30 min; and enzyme loading of 200 mg lipase/g gel. Under these conditions, protein immobilization efficiency was 91%, and the specific activity of the immobilized enzyme was 2.6 times that of the free enzyme. Excellent thermal stability was found for the immobilized enzyme in dry form or in hexane solution in the presence of acetic acid, in which case severe inactivation of free enzyme was observed. The immobilized enzyme retained its activity after heating at 70°C for 2 h, whereas the free enzyme lost 80% of its activity.  相似文献   

9.
A new immobilized biocatalyst based on Rhizopus oryzae fungal cells entrapped in poly(vinyl alcohol)‐cryogel was evaluated in both the batch and semi‐batch processes of L (+)‐lactic acid (LA) production, when glucose, acid hydrolysates of starch or gelatinized potato starch were used as the main substrates. Under the batch conditions, the immobilized biocatalyst developed produced LA with yields of 94% and 78% from glucose and acid starch hydrolysates, respectively. Semi‐batch conditions enabled product yields of 52% and 45% to be obtained with the corresponding substrates. The highest process productivity (up to 173 g L?1) was reached under semi‐batch conditions. Potato starch (5–70 g L?1) was also transformed into lactic acid by immobilized R. oryzae. It was shown that long‐term operation of the immobilized biocatalyst (for at least 480 h) produced a low decrease in metabolic activity. Copyright © 2006 Society of Chemical Industry  相似文献   

10.
Magnetically separable mesoporous silica nanocomposites with polyoaniline functionalization (Pani‐MS@Fe3O4) were synthesized for the immobilization of lipase via electrostatic adsorption. The as‐prepared Pani‐MS@Fe3O4 nanocomposites as well as immobilized lipase were characterized by FTIR, XRD, HRTEM, FESEM, BET, and TGA techniques. The BET surface area was calculated to be 779.27 m2/g, 425 m2/g, and 230.45 m2/g for magnetic mesoporous nanoparticle (MS@Fe3O4), Pani‐MS@Fe3O4 nanocomposite, and lipase immobilized Pani‐MS@Fe3O4 nanocomposite respectively. The comparison experiments verified that the immobilized lipase exhibited slightly higher optimal pH and temperature value with a wider pH‐activity and temperature stability in comparison with the free lipase. From Michaelis–Menten kinetic study, the lower Km value (0.25 mM) and higher Vmax value (0.0341 mM/min) for the immobilized lipase revealed the higher affinity of immobilized lipase toward the substrate. Further, reusability studies of the immobilized lipase indicated that up to 70% of the original activity was retained after having been recycled seven times. POLYM. COMPOS. 37:1152–1160, 2016. © 2014 Society of Plastics Engineers  相似文献   

11.
Ester hydrolysis at oil–water interface by lipase covalently immobilized on ionic liquid‐modified magnetic nanoparticles was investigated. Magnetic supports with a diameter of 10–15 nm were synthesized by covalent binding of ionic liquids (chain length C4 and C8 and anions Cl?, BF4?, and PF6?) on the surface of Fe3O4 nanoparticles. Lipase was covalently immobilized on Fe3O4 nanoparticles using ionic liquids as the coupling reagent. Ionic liquid‐modified magnetic nanoparticle‐grafted lipase preferentially located at the oil–water interface. It has higher catalytic activity than its native counterpart. A modified Michaelis–Menten model was used to elucidate the effect of stirring rate, aqueous–organic phase ratio, total amount of enzyme, and ester chain length. The influences of these conditions on esters hydrolysis at oil–water interface were consistent with the introduction of the ionic liquids interlayer. Ionic liquids could be used to control the oil–water interfacial characteristics during lipase catalyzed hydrolysis, and thus control the behavior of immobilized lipase. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

12.
The hydrolysis of sunflower and soybean oil, catalyzed by two enzymes, non‐immobilized Candida rugosa and immobilized Candida antarctica lipase, was performed at atmospheric and high‐pressure. The results showed that at atmospheric pressure between 40 °C and 60 °C initial reaction rates were influenced by the temperature variation, as expected. Due to favorable physico‐chemical properties of dense gases as reaction media, hydrolysis of soybean oil was performed in non‐conventional solvents: in supercritical (SC) CO2 and near‐critical propane. In SC CO2 the activity of non‐immobilized Candida rugosa lipase decreased while the reaction rates of hydrolysis catalyzed by immobilized Candida antarctica lipase were 1.5‐fold higher than at atmospheric pressure. However, the reaction rates for the hydrolyses catalyzed by both lipases, were much higher in propane than at atmospheric pressure.  相似文献   

13.
Four series of noble networks were synthesized with acrylic acid (AAc) copolymerized with varying amount of 2‐hydroxy propyl methacrylate or dodecyl methacrylate (AAc/HPMA or AAc/DMA; 5:1 to 5:5, w/w) in the presence of ethylene glycol dimethacrylate (EGDMA; 1, 5, 10, 15, and 20%, w/w) as a crosslinker and ammonium per sulfate (APS) as an initiator. Each of the networks was used to immobilize a purified lipase from Pseudomonas aeruginosa MTCC‐4713. The lipase was purified by successive salting out with (NH4)2SO4, dialysis, and DEAE anion exchange chromatography. Two of the matrices, E15a, i.e. [poly (AAc5co‐DMA1cl‐EGDMA15)] and I15c, i.e. [poly (AAc5co‐HPMA3cl‐EGDMA15)], that showed relatively higher binding efficiency for lipase were selected for further studies. I15c‐hydrogel retained 58.3% of its initial activity after 10th cycle of repetitive hydrolysis of p‐NPP, and I15c was thus catalytically more stable and efficient than the other matrix. The I15c‐hydrogel‐immobilized enzyme showed maximum activity at 65°C and pH 9.5. The hydrolytic activity of free and I15c‐hydrogel‐immobilized enzyme increased profoundly in the presence of 5 mM chloride salts of Hg2+, NH4+, Al3+, K+, and Fe3+. The immobilized lipase was preferentially active on medium chain length p‐nitrophenyl acyl ester (C:8, p‐nitrophenyl caprylate). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4636–4644, 2006  相似文献   

14.
Well‐defined and characterized polymeric matrices showing close chemical similarities but wide differences in water uptake and swellability in aqueous medium were used for lipase immobilization. Biphasic networks of 2‐hydroxypropylcellulose (HPC) were synthesized with acrylamide (AAm), methacrylamide (MAAm), N‐isopropylacrylamide (N‐i‐PAAm), and 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPSA) and simultaneously crosslinked with N,N‐methylene bisacrylamide in aqueous medium by using simultaneous γ‐radiation technique. Lipase enzyme was produced from a mesophilic bacterial isolate (HBK‐8) and was immobilized onto all the matrices by adsorption method. The activity of the immobilized enzyme was optimized for pH, temperature, and amount of crude enzyme and effect of dehydration. High relative activity for the immobilized enzymes was observed and loss of activity with time was minimal; reusability was found to be good. The activity of the immobilized enzyme was also observed to be good in both esterification and hydrolysis of esters. In the present study, lipase immobilization, hydrolysis of p‐nitrophenyl palmitate, and optimum pH and temperature for substrate hydrolysis were evaluated for different matrices to study polymer structure and enzyme activity relationship in diverse physical environments. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3135–3143, 2004  相似文献   

15.
The lipase production of Burkholderia sp. GXU56 was influenced by carbon and nitrogen sources, inorganic salts, initial pH of the medium and cultivation temperature. The maximum lipase production was 580.52 U/mL and reached 5 times the level of the basic medium in the optimum medium at pH 8.0, 32 °C, 200 rpm and 40–48 h. The lipase was purified 53.6 fold to homogeneity and the molecular weight was 35 KDa on SDS‐PAGE. The optimum pH and temperature of the lipase were 8.0 and 40 °C, respectively, and it was stable in the range of pH 7–8.5 and at temperatures below 45 °C. The lipase activity was strongly inhibited by Zn2+, Cu2+, Co2+, Fe2+, Fe3+ ions and SDS, while it was stimulated by Li+ and Ca2+ ions and in presence of 0.1 % CTAB, 0.1 % Triton X‐100 and 10 % DMSO. Km and Vmax of the lipase were calculated to be 0.038 mmol/L, and 0.029 mmol/L min–1, respectively, with PNPB as the substrate. The GXU56 lipase showed enantioselective hydrolysis of (R,S)‐methyl mandelate to (R)‐mandelic acid, which is an important intermediate in the pharmaceutical industry.  相似文献   

16.
A biodegradable polyester resin was polymerized from N‐benzyloxycarbonyl‐L ‐glutamic acid and ethylene glycol. Rhizopus delemar lipase was used as a biocatalyst for the rupture of ester bonds during the hydrolysis studies. Depolymerization was observed to follow a Michaelis–Menten mechanism, with the maximum rate of monomer formation dP/dtmax = 1.12 × 10−8 mol/s and the rate constant Km × 2.03 × 10−4 mol. Subject to initial conditions described by the most probable distribution and Michaelis–Menten–type depolymerization rate expressions, population density distribution dynamics of the polymeric molecules that formed the resin were explicitly described using a deterministic approach. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 514–520, 2001  相似文献   

17.
Oxidative stability of lipids is one of the most important parameters affecting their quality. Lipase‐catalyzed lipophilic tyrosyl esters with an equivalent carbon alkyl chain but different degrees of unsaturation (C18:0 to C18:4n3) were prepared, characterized, and used as antioxidants. Free fatty acids and fatty acid ethyl esters (substrate molar ratio tyrosol: acyl donor, 1:10) were used as acyl donors and immobilized lipase from Candida antarctica was the biocatalyst (10 %). The phenolipids were isolated and characterized using ESI–MS, 1H‐NMR, and 13C‐NMR. Peroxide value (PV) and para‐anisidine value (p‐AV) were measured to evaluate their antioxidant activities in bulk oil structured lipid (SL) and in an oil‐in‐water emulsion (SL‐based infant formula). No significant difference was found in yield and reaction time between the two types of acyl donors. However, as the unsaturation of the fatty acids increased the reaction time also increased. In SL, tyrosyl esters exhibited lower antioxidant activity than tyrosol whereas the addition of an alkyl chain enhanced the antioxidant efficiency of tyrosol in infant formula. Tyrosyl oleate was the most efficient antioxidant in the emulsion system followed by tyrosyl stearate and tyrosyl linoleate. These results suggest that the synthesized phenolipids may be used as potential antioxidants in lipid‐based products.  相似文献   

18.
BACKGROUND: A simple procedure was employed to covalently immobilize a Klebsiella oxytoca hydrolase (SNSM‐87) onto epoxy‐activated supports of Eupergit C 250L via multipoint covalent attachment. The resultant biocatalyst was explored for the hydrolytic resolution of a variety of (R,S)‐2‐hydroxycarboxylic acid ethyl esters. RESULTS: With the hydrolytic resolution of (R,S)‐ethyl mandelate in biphasic media as the model system, optimal conditions of 55 °C, pH 6 buffer and isooctane as the organic phase were selected for improving the enzyme stability (activity retained from 10% to 50% at 96 h) and enantioselectivity (VSVR?1 value enhanced from 44 to 319) in comparison to the performance of free enzyme. Moreover, the immobilized enzyme retained its activity and enantioselectivity after eight cycles of hydrolysis at 55 °C. When applying the resolution process to other (R,S)‐2‐hydroxycarboxylic acid ethyl esters, 2.4‐ to 4.0‐fold enhancements of the enantioselectivity in general were obtainable. CONCLUSIONS: The enantioselectivity enhancement, good reusability and easy recovery after reaction indicate that the immobilized SNSM‐87 may have the potential as an industrial biocatalyst for the preparation of optically pure 2‐hydroxycarboxylic acids. Copyright © 2008 Society of Chemical Industry  相似文献   

19.
Two approaches on enzymatic phospholipid modification were studied: (1) transphosphatidylation of the 1,2‐dilauroyl‐sn‐glycero‐3‐phosphocholine (DLPC) and ethanolamine in biphasic and anhydrous organic solvent systems by phospholipase D (PLD) and (2) incorporation of oleic acid into the sn1‐position of DLPC in organic solvents with different immobilized lipases at controlled water activity. First, DLPC was chemically synthesized from glycerophosphocholine and lauric acid. Next, PLD‐catalyzed head group exchange of DLPC with ethanolamine was studied using an enzyme from Streptomyces antibioticus expressed recombinantly in E. coli. A comparison of the free PLD with the biocatalyst activated by a salt‐activation technique using KCl showed that the salt‐activated enzyme (PLD‐KCl) was 10–12 folds more active based on the amount of protein used. Thus, DLPC was quantitatively converted to 1,2‐dilauroyl‐sn‐glycero‐3‐phosphoethanolamine in an anhydrous solvent system within 12 h at 60 °C. For the acidolysis of DLPC with oleic acid, among the four lipases studied (CAL‐B, Lipozyme TL IM, Lipozyme RM IM and lipase D immobilized on Accurel EP‐100), Lipozyme TL IM showed the highest activity and incorporation of oleic acid. A quantitative incorporation was achieved at 40 °C using a 8‐fold molar excess of oleic acid in n‐hexane at a water activity of 0.11.  相似文献   

20.
The concentration of stearidonic acid (SDA, 18:4 n-3) in free fatty acids (FFA) formed by selective esterification with dodecanol (lauryl alcohol) was studied. For this purpose, modified soybean oil (initial SDA content, ~23 %) was converted into its corresponding FFA by chemical hydrolysis. In a second step, the resulting FFA were esterified with dodecanol. Process variables such as the type of biocatalyst (lipase), substrate molar ratio and amount of lipase were evaluated. The best SDA concentration (58 %) and recovery (94 %) were attained by performing the esterification reaction for 4 h, with 1:1 molar ratio (dodecanol:FFA), and 5 % (w/w) Candida rugosa lipase as biocatalyst. It was observed that SDA was concentrated in the unesterified fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号