首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
全球水华现象日益严重,微生物控藻由于具有成本低、高效、环境友好等优点被广泛关注。以筛自河道的一株溶藻菌H6为对象,开展其对铜绿微囊藻(Microcystis aeruginosa)的溶藻特性研究。实验结果表明,H6最佳投加量(体积分数)为5%,最佳投加时机为蓝藻水华暴发初期(680 nm波长处的光密度(OD680)为0.3),pH控制在5~11,7 d溶藻率超过70%。H6以间接溶藻为主,直接溶藻为辅,通过分泌耐高温的溶藻物质进行除藻且溶藻产物为腐殖酸类物质。H6属于肠杆菌属(Enterobacteriaceae),在宽pH范围内有较好溶藻效果,丰富了水体蓝藻水华治理方面的菌种资源;分泌的溶藻物质的耐高温特性为后续菌粉制备及生产应用提供了便利。  相似文献   

2.
采用了从农药厂阿特拉津生产车间排污口污泥中分离出的菌种AT菌 ,进行了农药阿特拉津污染地下水微生物治理的模拟实验研究 ,在实验条件 (T =10℃ ,pH =7.5 )与野外含水层的条件基本一致情况下 ,难于生物降解的污染质阿特拉津的一次投菌降解率可达 3 1.0 8% ;设计了两种有效细菌的投放方式以模拟野外条件下的菌种投加条件。另外 ,AT菌的作用会造成被治理含水层的渗透性能降低 ,两种投菌方式下 ,实验后含水层的渗透系数分别下降 60 .5 4%和 3 4 5 6%。清水冲洗 10d的渗透性恢复率分别为 48.96%及 81.3 6% ,说明清水渗透恢复的方法效果明显  相似文献   

3.
采用了从农药厂阿特拉津生产车间排污口污泥中分离出的力种AT菌,进行了农药阿特拉津污染地下水微生物治理的模拟实验研究,在实验条件(T=10℃,pH=7.5)与野外含水层的条件基本一致情况下,难于生物降解的污染质阿特拉津的一次投菌降解率可达31.08%;设计了两种有效细菌的投放方式以模拟野外条件下的菌种投加条件。另外,AT菌的作用会造成被治理含水层的渗透性能降低,两种投菌方式下,实验后含水层的渗透系数分别下降60.54%和34.56%。清水冲洗10d的渗透性恢复率分别为48.96%及81.36%,说明清水渗透恢复的方法效果明显。  相似文献   

4.
玄武湖蓝藻水华应急治理成效分析   总被引:8,自引:0,他引:8  
2005年9-10月间,以粘土法为主,对玄武湖蓝藻水华进行了应急治理。经监测表明,应急治理有效抑制了蓝藻水华,湖区景观明显改善。形成蓝藻水华的微囊藻,各湖区下降幅度大于95%。综合污染指数、富营养化程度均有不同程度的降低,水体透明度提高0.14m,水质化学耗氧量、高锰酸盐指数、总磷浓度大幅降低,但生态补水主要流经区域pH无明显改善,各湖区总氮超标率有所上升。浮游植物数量下降93%,浮游动物种群数量上升47%,底栖动物种类数量无显著变化。相对静止水域细菌总数持平,生态补水流经区域细菌总数下降幅度较大。治理期间未发现大型水生植物、鱼虾批量死亡。沉积物中,铜、铅、砷含量无明显差异,汞含量升高,但低于往年监测水平,有机质略有升高,总磷含量有较大幅度上升。  相似文献   

5.
针对水源水库的氮源污染和有机物污染问题,研究了原位投菌技术对微污染水源水的修复效果。实验在中试反应器中进行,所投加菌剂为贫营养好氧反硝化细菌。实验结果表明,在菌剂投加量为0.1 mg/L,溶解氧质量浓度为5~8 mg/L,水温为16~25℃的条件下,系统对水中主要污染物NO3--N、TN和CODMn均有较好的去除效果,质量浓度分别从1.68、2.25、5.50 mg/L降至最低值0.75、0.95、3.03 mg/L,最大去除率分别可达到57.5%、57.7%和44.9%。系统对水中氮源污染和有机物的去除效果均能够满足《地表水环境质量标准》中的Ⅲ类标准,实验结果表明,将原位投菌技术应用于微污染水源水体的水质改善是可行的。同时还探讨了贫营养好氧反硝化细菌的作用机理。  相似文献   

6.
引黄水臭氧预氧化强化混凝处理及安全性研究   总被引:1,自引:0,他引:1  
分析了山西省太原段的引黄水水质,探讨了臭氧预氧化强化混凝处理引黄水的适用性、处理效果及安全性。结果表明,引黄水原水中的COD含量较高,而Br-未检出,提示可以采用臭氧预氧化强化混凝处理;总体来说,臭氧低投加量(0.52~0.98mg/L)时的助凝效果更为显著,在不同的聚合氯化铝(PAC)投加量下的除浊效果都优于常规混凝处理;单独投加臭氧时,随着臭氧投加量的增加,水体紫外吸光度(UV254)逐渐降低,当臭氧投加量为2.52mg/L时,UV254去除率为44%;虽然常规混凝处理即可控制出水的浊度和UV254,但由于混凝剂投加量大,综合效益较低,而臭氧预氧化在一定程度上能起到助凝作用,也能对水体UV254起到良好的控制作用;从甲醛、BrO3-产生量控制的角度来看,太原段引黄水水质适用臭氧预氧化强化混凝处理,安全性较好。  相似文献   

7.
以处理生活污水的平板膜-生物反应器为依托,通过将进水调配成30、200和500 mg/L 3种不同的钙离子浓度,考察钙离子对短期膜污染的影响。结果表明,随着钙离子浓度的增加,TMP增长趋势变小,膜污染得到缓解;钙离子浓度为200 mg/L时,膜的渗透性最好,而过高的钙离子浓度并不利于降低膜污染。钙离子的投加强化了生物絮凝作用,可以降低SMP和LB-EPS的含量,主要通过降低外部阻力减缓膜污染;投加钙离子也可以增加絮体的大小,较大的絮体形成的泥饼有更好的过滤性,然而过高的钙离子浓度会使无机颗粒的量增加,造成平均粒径下降,将会加重内部污染,进而加剧膜污染。  相似文献   

8.
在广州市黄埔区某公园池塘进行现场围隔对比实验,通过投加固定化生物催化剂(IBC)治理藻类水华。结果表明,在IBC中细菌的直接或间接杀藻的作用下,水体中的藻类生物量迅速降低,叶绿素a去除率达到81.5%;微生物的快速生长及酶和酶活因子的协同作用下,水中污染物被快速降解,使水体中的总氮、氨氮和COD的浓度快速下降,去除率分别达到81.9%、80.3%和65.3%,并维持在低水平,进一步抑制了藻类水华的形成和发展,加快水体的净化。  相似文献   

9.
有效微生物菌与水生植物联合净化珍珠蚌养殖废水   总被引:4,自引:0,他引:4  
以无有效微生物(EM)菌与水生植物的珍珠蚌养殖水体(NSE)作为对照组,对EM菌(EM)、苦草+菹草(VP)、水芹菜+水葱(OS)、苦草+菹草+EM菌(VPE)以及水芹菜+水葱+EM菌(OSE)净化珍珠蚌养殖废水的效果进行了对比研究。实验结果表明,EM、VP、OS对珍珠蚌养殖水体N、P均有较好的净化效果,VPE与OSE去N、P效果更佳。净化28 d后5组合中VPE对NH4+-N的去除效果最好,去除率达98.79%;OSE对NO2-N与TN的去除效果最佳,去除率分别达88.09%和91.53%;TP的去除率VPE最高,达91.75%;而COD的去除率以VP最高,达94.97%,效果好于VPE与OSE;EM池水体DO质量浓度第8天达到峰值(9.88±0.61)mg/L,VP、OS、VPE与OSE均在第16天左右达到峰值。实验数据还表明,EM净化水体效果与VP、OS、VPE和OSE均存在显著性差异,对照组NSE对水体的净化效果不明显。  相似文献   

10.
黄程兰  陈滢  刘敏 《环境工程学报》2012,6(11):3894-3898
污泥膨胀是活性污泥工艺运行中经常遇到的最棘手的问题之一。本实验以人工合成污水为底物,采用序机式活性污泥法(SBR);研究投加无机混凝剂氯化钙控制污泥膨胀的情况,同时研究丝状菌和菌胶团的变化。研究发现,投加氯化钙后,丝状菌数量明显减少;形成较多大而密实规则的菌胶团,污泥膨胀得到控制。污泥容积指数(SVI)由最初的309.5 mL/g降到67.1 mL/g,污泥沉降性能改善。停止投加氯化钙后又运行了18周期,活性污泥没有发生再次膨胀。投加氯化钙对COD去除率没有明显影响。研究结果表明,投加氯化钙是一种有效的污泥膨胀应急控制措施。  相似文献   

11.
New in situ reactive barrier technologies were tested nearby a local aquifer in Bitterfeld, Saxonia-Anhalt, Germany, which is polluted mainly by chlorobenzene (CB), in concentrations up to 450 microM. A reactor filled with original aquifer sediment was designed for the microbiological remediation of the ground water by indigenous bacterial communities. Two remediation variants were examined: (a) the degradation of CB under anoxic conditions in the presence of nitrate; (b) the degradation of CB under mixed electron acceptor conditions (oxygen+nitrate) using hydrogen peroxide as the oxygen-releasing compound. Under anoxic conditions, no definite degradation of CB was observed. Adding hydrogen peroxide (2.94 mM) and nitrate (2 mM) led to the disappearance of CB (ca. 150 microM) in the lower part of the reactor, accompanied by a strong increase of the number of cultivable aerobic CB degrading bacteria in reactor water and sediment samples, indicating that CB was degraded mainly by productive bacterial metabolism. Several aerobic CB degrading bacteria, mostly belonging to the genera Pseudomonas and Rhodococcus, were isolated from reactor water and sediments. In laboratory experiments with reactor water, oxygen was rapidly released by hydrogen peroxide, whereas biotic-induced decomposition reactions of hydrogen peroxide were almost four times faster than abiotic-induced decomposition reactions. A clear chemical degradation of CB mediated by hydrogen peroxide was not observed. CB was also completely degraded in the reactor after reducing the hydrogen peroxide concentration to 880 microM. The CB degradation completely collapsed after reducing the hydrogen peroxide concentration to 440 microM. In the following, the hydrogen peroxide concentrations were increased again (to 880 microM, 2.94 mM, and 880 microM, respectively), but the oxygen demand for CB degradation was higher than observed before, indicating a shift in the bacterial population. During the whole experiment, nitrate was uniformly reduced during the flow path in the reactor.  相似文献   

12.
Polyacrylamide (PAM) use in irrigation for erosion control has increased water infiltration and reduced soil erosion. This has improved runoff water quality via lower concentrations of nitrogen, phosphorous, and pesticides, and decreased biological oxygen demand. Since non-toxic high molecular weight anionic PAMs removed clay size sediment particles in flowing water, we hypothesized that PAM would effectively remove or immobilize microorganisms in flowing water. In an agricultural field, we determined the efficacy of PAM-treatment of furrow irrigation water to remove several categories of microorganisms in the inflow and runoff. Treatments were: (1) PAM application and a control; (2) three flow rates; (3) two distances from the inflow point; and (4) three times during each irrigation. After water traveled 1 m at 7.5 and 15.5 l min(-1), PAM-treatment reduced total bacterial and microbial biomass and total fungal biomass relative to the control treatment. After water traveled 40 m at 7.5, 15.5, and 22.5 l min(-1), PAM-treatment reduced algae, the numbers active and total bacteria, active and total fungal length, and total bacterial biomass, total fungal and microbial biomass relative to the control treatment. Although specific organisms were not identified or monitored in this study, the results clearly have implications for controlling the spread of soil-borne plant pathogens and other classes of harmful organisms within and among fields via irrigation water and in re-utilized return flows. Beyond furrow-irrigated agriculture, new methods to manage overland transmission of harmful microorganisms could potentially help control transport of pathogens from animal waste in runoff and groundwater.  相似文献   

13.
Potentials and drawbacks of chelate-enhanced phytoremediation of soils.   总被引:28,自引:0,他引:28  
Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from soils by plants. However, side-effects related to the addition of chelates, e.g. metal leaching and effects on soil micro-organisms, were usually neglected. Therefore, greenhouse and lysimeter studies were conducted to study the phytoremedation potential of EDGA and citric acid and to evaluate its effects on microbial activity and leaching of Cd, Zn Cu and Pb. Grass, lupine and yellow mustard were grown on a moderately polluted acid (pH 4.5) sandy soil that contained 2 mg kg(-1) Cd and 200 mg kg(-1) Zn. Citric acid appeared to be degraded microbially within a few days after addition which limited its potential for long-lasting remediation studies. EDGA enhanced metal solubility but plant uptake did not increase accordingly. The metal shoot:root ratio increased upon addition of EDGA but it also reduced the net shoot and root biomass production of both lupine and yellow mustard. Bacterial biomass was higher in both the citric and EDGA treated pots but bacterial activity remained unaffected. The number of microbivorous nematodes was greatly reduced upon addition of EDGA which was most likely related to the reduced biomass production and, to a smaller extent, to the changes in the composition of the available food. Furthermore, EDGA enhanced metal leaching in the lysimeter study which could lead to groundwater pollution. To prevent these unwanted side-effects, careful management of phytoremediation methods, therefore, seems necessary.  相似文献   

14.
The two-dimensional distribution of flow patterns and their dynamic change due to microbial activity were investigated in naturally fractured chalk cores. Long-term biodegradation experiments were conducted in two cores ( approximately 20 cm diameter, 31 and 44 cm long), intersected by a natural fracture. 2,4,6-tribromophenol (TBP) was used as a model contaminant and as the sole carbon source for aerobic microbial activity. The transmissivity of the fractures was continuously reduced due to biomass accumulation in the fracture concurrent with TBP biodegradation. From multi-tracer experiments conducted prior to and following the microbial activity, it was found that biomass accumulation causes redistribution of the preferential flow channels. Zones of slow flow near the fracture inlet were clogged, thus further diverting the flow through zones of fast flow, which were also partially clogged. Quantitative evaluation of biodegradation and bacterial counts supported the results of the multi-tracer tests, indicating that most of the bacterial activity occurs close to the inlet. The changing flow patterns, which control the nutrient supply, resulted in variations in the concentrations of the chemical constituents (TBP, bromide and oxygen), used as indicators of biodegradation.  相似文献   

15.
The impacts of the fungicides azoxystrobin, tebuconazole and chlorothalonil on microbial properties were investigated in soils with identical mineralogical composition, but possessing contrasting microbial populations and organic matter contents arising from different management histories. Degradation of all pesticides was fastest in the high OM/biomass soil, with tebuconazole the most persistent compound, and chlorothalonil the most readily degraded. Pesticide sorption distribution coefficient (K(d)) did not differ significantly between the soils. Chlorothalonil had the highest K(d) (97.3) but K(d) for azoxystrobin and tebuconazole were similar (13.9 and 12.4, respectively). None of the fungicides affected microbial biomass in either soil. However, all fungicides significantly reduced dehydrogenase activity to varying extents in the low OM/biomass soil, but not in the high OM/biomass soil. The mineralization of subsequent applications of herbicides, which represents a narrow niche soil process was generally reduced in both soils by azoxystrobin and chlorothalonil. 16S rRNA-PCR denaturing gradient gel electrophoresis (DGGE) indicated that none of the fungicides affected bacterial community structure. 18S rRNA PCR-DGGE analysis revealed that a small number of eukaryote bands were absent in certain fungicide treatments, with each band being specific to a single fungicide-soil combination. Sequencing indicated these represented protozoa and fungi. Impacts on the specific eukaryote DGGE bands showed no relationship to the extent to which pesticides impacted dehydrogenase or catabolism of herbicides.  相似文献   

16.
Bacterial and meiofaunal abundance and biomass and their response to the disturbance induced by fish-farm biodeposition were investigated from March to October 1997 on a monthly basis at two stations of the Gaeta Gulf (Tyrrhenian Sea, Mediterranean Sea). The biopolymeric fraction of the organic matter was characterized by high concentrations which was similar at both fish-farming-impacted and control stations. Similarly, bacteria accounted for a small fraction of the biopolymeric organic carbon (< 1%), while the contribution due to auto-fluorescent cell biomass (i.e. prokaryotic and eukaryotic cells displaying auto-fluorescence) to the total biopolymeric carbon was quantitatively negligible (< 0.1%). Benthic bacteria appear to be sensitive to organic enrichment as their abundance increased significantly beneath the cage, whilst numbers of meiofauna was lower than in the control. Changes occurred also in terms of individual nematode biomass that increased as result of the biodeposition. A particularly useful tool appeared to be represented by the ratio of benthic auto-fluorescent cells to bacterial abundance, bacteria to meiofaunal biomass and auto-fluorescent cells to meiofauna biomass. All these parameters described well the impact due to biodeposition on the benthic environment as their ratios displayed significantly higher values in farm sediments, but recovered rapidly (15 days) to values observed in the control (i.e. undisturbed conditions) immediately after cage removal. Changes observed in the present study highlight that the increased organic loading determined a shift of the relative contribution of the different benthic components to the total biopolymeric carbon, so that in highly impacted systems total benthic biomass becomes increasingly dominated by microbial components.  相似文献   

17.
Abstract

Effects of the herbicide metsulfuron‐methyl on soil microorganisms and their activities in two soils were evaluated under laboratory conditions. Measurements included their populations, soil respiration, and microbial biomass. In the clay soil, bacterial populations decreased with increasing concentration of metsulfuron‐methyl during the first 9 days of incubation but exceeded that of the control soil from day 27 onward. In the sandy loam soil, the herbicide reduced bacterial populations during the first 3 days after application, but these increased to the level of untreated controls after 9 days’ incubation. Fungal populations in both soils increased with increasing metsulfuron‐methyl concentrations, especially in the sandy loam soil. CO2 evolution was stimulated in both soils in the presence of the herbicide initially, but decreased during days 3 to 9 of the incubation period before increasing again afterward. The presence of metsulfuron‐methyl in the soil increased microbial biomass, except in sandy loam soil at the first day of incubation.  相似文献   

18.
鲢鱼放养控制北京城市河湖水华试验研究   总被引:1,自引:1,他引:1  
介绍了利用鲢鱼控制北京城市河湖水华的试验研究,通过不同放养密度(0、17、51和103 g/m3)的现场围隔试验,对鲢鱼放养对水体水质和浮游生物的影响进行了分析.研究结果表明,鲢鱼放养使有鱼围隔中浮游生物量极低,从而使浮游植物基本不受浮游动物影响,而直接受鱼类影响;同时,中等密度(51 g/m3)的鲢鱼放养使水华蓝藻和微小藻的生长均得到了有效抑制,使藻类生物量最低.  相似文献   

19.
An in-situ experiment was performed to quantify the impacts of copper sulfate on plankton structure and carbon dynamics. Plankton were exposed to 140 microg litre(-1) copper in quadruplicate mesocosms. Community structure was monitored for 14 days by microscopical counts and compared with untreated controls. Carbon dynamics were assessed by tracer studies using (14)C bicarbonate and (14)C glucose, to follow the fate of carbon in the algal- and bacterial-based pathways, respectively. Copper reduced the dry-weight biomass of zooplankton, ciliates, flagellates, and autotrophic phytoplankton. Bacterial biomass was increased by an order of magnitude relative to the controls. The bacterial response was most likely due to reduced grazing pressure and/or nutrient release from dying plankton. Copper reduced the effectiveness of the food web in transporting carbon to the surviving zooplankton. Bacterial-based pathways were more greatly affected than algal-based pathways, because zooplankton in the copper treatment were macro-grazers (cyclopoids), which cannot utilize bacteria.  相似文献   

20.
A semi-natural field study was carried out to assess the likelihood of a potentiation of toxicity between the ergosterol biosynthesis inhibiting (EBI) fungicide, prochloraz, and the organophosphorus (OP) insecticide, malathion, in the red-legged partridge (Alectoris rufa). Groups of partridges kept in four large grassland enclosures were exposed to either prochloraz-treated or control wheat for 7 days after which two of the enclosures were sprayed with malathion whilst the remaining two were sham-sprayed. Cytochrome P-450, aldrin epoxidase and 7-ethoxyresorufin-O-deethylase (EROD) activities were found to be significantly higher in the group exposed to prochloraz alone compared to controls, suggesting that induction of the hepatic microsomal monooxygenase system had occurred by ingestion of prochloraz-treated wheat. However, the level of induction produced was not sufficient to cause a potentiation of malathion toxicity. There was evidence for induction of several forms of P-450 recognised by antibodies raised against 1A1, 2C6 and 4A1 in the prochloraz-exposed partridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号